
Previous Article
A simple analysis of vaccination strategies for rubella
 MBE Home
 This Issue
 Next Article
A note on the replicator equation with explicit space and global regulation
1.  Applied Mathematics–1, Moscow State University of Railway Engineering, Obraztsova 9, Moscow, 127994, Russian Federation, Russian Federation, Russian Federation 
References:
[1] 
M. Boerlijst and P. Hogeweg, Selfstructuring and selection: Spiral waves as a substrate for prebiotic evolution, in "Artificial Life" (eds. C. G. Langton, C. Taylor, J. D. Farmer and S. Rasmussen), AddisonWesley, 2 (1991), 255276. 
[2] 
M. C. Boerlijst and P. Hogeweg, Spiral wave structure in prebiotic evolution: Hypercycles stable against parasites, Physica D, 48 (1991), 1728. doi: 10.1016/01672789(91)90049F. 
[3] 
A. S. Bratus and E. N. Lukasheva, Stability and the limit behavior of the open distributed hypercycle system, Differential Equations, 45 (2009), 15641576. 
[4] 
A. S. Bratus, A. S. Novozhilov and A. P. Platonov, "Dynamical Systems and Models in Biology," (Russian), Fizmatlit, 2010. 
[5] 
A. S. Bratus and V. P. Posvyanskii, Stationary solutions in a closed distributed EigenSchuster evolution system, Differential Equations, 42 (2006), 17621774. 
[6] 
A. S. Bratus, V. P. Posvyanskii and A. S. Novozhilov, Existence and stability of stationary solutions to spatially extended autocatalytic and hypercyclic systems under global regulation and with nonlinear growth rates, Nonlinear Analysis: Real World Applications, 11 (2010), 18971917, arXiv:0901.3556. 
[7] 
R. S. Cantrell and C. Cosner, "Spatial Ecology via ReactionDiffusion Equations," Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003. 
[8] 
R. Cressman, "Evolutionary Dynamics and Extensive Form Games," MIT Press Series on Economic Learning and Social Evolution, 5, MIT Press, Cambridge, 2003. 
[9] 
R. Cressman and G. T. Vickers, Spatial and density effects in evolutionary game theory, Journal of Theoretical Biology, 184 (1997), 359369. doi: 10.1006/jtbi.1996.0251. 
[10] 
M. B. Cronhjort and C. Blomberg, Hypercycles versus parasites in a two dimensional partial differential equation model, Journal of Theoretical Biology, 169 (1994), 3149. doi: 10.1006/jtbi.1994.1128. 
[11] 
U. Dieckmann, R. Law and J. A. J. Metz, editors, "The Geometry of Ecological Interactions: Simplifying Spatial Complexity," Cambridge Studies in Adaptive Dynamics, 1, IIASA, Laxenburg, Cambridge University Press, Cambridge, 2005. 
[12] 
M. Eigen and P. Schuster, The hypercycle. A principle of natural selforganization. Part A: Emergence of the hypercycle, Naturwissenschaften, 64 (1977), 541565. doi: 10.1007/BF00450633. 
[13] 
R. Ferriere and R. E. Michod, Wave patterns in spatial games and the evolution of cooperation, in "The Geometry of Ecological Interactions: Simplifying Spatial Complexity," (eds. U. Dieckmann, R. Law and J. A. J. Metz), Cambridge University Press, (2000), 318339. doi: 10.1017/CBO9780511525537.020. 
[14] 
R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics, 7 (1937), 353369. doi: 10.1111/j.14691809.1937.tb02153.x. 
[15] 
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields," Applied Mathematical Sciences, 42, SpringerVerlag, New York, 1990. 
[16] 
K. P. Hadeler, Diffusion in Fisher's population model, Rocky Mountain Journal of Mathematics, 11 (1981), 3945. doi: 10.1216/RMJ198111139. 
[17] 
J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics," Cambridge University Press, Cambridge, 1998. 
[18] 
J. Hofbauer and K. Sigmund, Evolutionary game dynamics, Bulletin of American Mathematical Society, 40 (2003), 479519. doi: 10.1090/S0273097903009881. 
[19] 
V. C. L. Hutson and G. T. Vickers, The spatial struggle of titfortat and defect, Philosophical Transactions of the Royal Society. Series B: Biological Sciences, 348 (1995), 393404. doi: 10.1098/rstb.1995.0077. 
[20] 
G. P. Karev, On mathematical theory of selection: Continuous time population dynamics, Journal of Mathematical Biology, 60 (2010), 107129, arXiv:0812.4280. 
[21] 
G. P. Karev, A. S. Novozhilov and F. S. Berezovskaya, On the asymptotic behavior of the solutions to the replicator equation, Mathematical Medicine and Biology, (2010), in press, arXiv:0906.4986. 
[22] 
J. Maynard Smith, "Evolution and the Theory of Games," Cambridge University Press, 1982. 
[23] 
J. Maynard Smith and G. R. Price, The logic of animal conflict, Nature, 246 (1973), 1518. doi: 10.1038/246015a0. 
[24] 
S. G. Mikhlin, "Variational Methods in Mathematical Physics," A Pergamon Press Book, The Macmillan Co., New York, 1964. 
[25] 
P. Schuster and K. Sigmund, Replicator dynamics, Journal of Theoretical Biology, 100 (1983), 533538. doi: 10.1016/00225193(83)904459. 
[26] 
Y. M. Svirezhev and V. P. Passekov, "Fundamentals of Mathematical Evolutionary Genetics," Mathematics and its Applications (Soviet Series), 22, Kluwer Academic Publishers, Dordrecht, 1990. 
[27] 
P. Taylor and L. Jonker, Evolutionarily stable strategies and game dynamics, Mathematical Biosciences, 40 (1978), 145156. doi: 10.1016/00255564(78)900779. 
[28] 
G. T. Vickers, Spatial patterns and ESS's, Journal of Theoretical Biology, 140 (1989), 129135. doi: 10.1016/S00225193(89)800335. 
[29] 
E. D. Weinberger, Spatial stability analysis of Eigen's quasispecies model and the less than five membered hypercycle under global population regulation, Bulletin of Mathematical Biology, 53 (1991), 623638. 
show all references
References:
[1] 
M. Boerlijst and P. Hogeweg, Selfstructuring and selection: Spiral waves as a substrate for prebiotic evolution, in "Artificial Life" (eds. C. G. Langton, C. Taylor, J. D. Farmer and S. Rasmussen), AddisonWesley, 2 (1991), 255276. 
[2] 
M. C. Boerlijst and P. Hogeweg, Spiral wave structure in prebiotic evolution: Hypercycles stable against parasites, Physica D, 48 (1991), 1728. doi: 10.1016/01672789(91)90049F. 
[3] 
A. S. Bratus and E. N. Lukasheva, Stability and the limit behavior of the open distributed hypercycle system, Differential Equations, 45 (2009), 15641576. 
[4] 
A. S. Bratus, A. S. Novozhilov and A. P. Platonov, "Dynamical Systems and Models in Biology," (Russian), Fizmatlit, 2010. 
[5] 
A. S. Bratus and V. P. Posvyanskii, Stationary solutions in a closed distributed EigenSchuster evolution system, Differential Equations, 42 (2006), 17621774. 
[6] 
A. S. Bratus, V. P. Posvyanskii and A. S. Novozhilov, Existence and stability of stationary solutions to spatially extended autocatalytic and hypercyclic systems under global regulation and with nonlinear growth rates, Nonlinear Analysis: Real World Applications, 11 (2010), 18971917, arXiv:0901.3556. 
[7] 
R. S. Cantrell and C. Cosner, "Spatial Ecology via ReactionDiffusion Equations," Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003. 
[8] 
R. Cressman, "Evolutionary Dynamics and Extensive Form Games," MIT Press Series on Economic Learning and Social Evolution, 5, MIT Press, Cambridge, 2003. 
[9] 
R. Cressman and G. T. Vickers, Spatial and density effects in evolutionary game theory, Journal of Theoretical Biology, 184 (1997), 359369. doi: 10.1006/jtbi.1996.0251. 
[10] 
M. B. Cronhjort and C. Blomberg, Hypercycles versus parasites in a two dimensional partial differential equation model, Journal of Theoretical Biology, 169 (1994), 3149. doi: 10.1006/jtbi.1994.1128. 
[11] 
U. Dieckmann, R. Law and J. A. J. Metz, editors, "The Geometry of Ecological Interactions: Simplifying Spatial Complexity," Cambridge Studies in Adaptive Dynamics, 1, IIASA, Laxenburg, Cambridge University Press, Cambridge, 2005. 
[12] 
M. Eigen and P. Schuster, The hypercycle. A principle of natural selforganization. Part A: Emergence of the hypercycle, Naturwissenschaften, 64 (1977), 541565. doi: 10.1007/BF00450633. 
[13] 
R. Ferriere and R. E. Michod, Wave patterns in spatial games and the evolution of cooperation, in "The Geometry of Ecological Interactions: Simplifying Spatial Complexity," (eds. U. Dieckmann, R. Law and J. A. J. Metz), Cambridge University Press, (2000), 318339. doi: 10.1017/CBO9780511525537.020. 
[14] 
R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics, 7 (1937), 353369. doi: 10.1111/j.14691809.1937.tb02153.x. 
[15] 
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields," Applied Mathematical Sciences, 42, SpringerVerlag, New York, 1990. 
[16] 
K. P. Hadeler, Diffusion in Fisher's population model, Rocky Mountain Journal of Mathematics, 11 (1981), 3945. doi: 10.1216/RMJ198111139. 
[17] 
J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics," Cambridge University Press, Cambridge, 1998. 
[18] 
J. Hofbauer and K. Sigmund, Evolutionary game dynamics, Bulletin of American Mathematical Society, 40 (2003), 479519. doi: 10.1090/S0273097903009881. 
[19] 
V. C. L. Hutson and G. T. Vickers, The spatial struggle of titfortat and defect, Philosophical Transactions of the Royal Society. Series B: Biological Sciences, 348 (1995), 393404. doi: 10.1098/rstb.1995.0077. 
[20] 
G. P. Karev, On mathematical theory of selection: Continuous time population dynamics, Journal of Mathematical Biology, 60 (2010), 107129, arXiv:0812.4280. 
[21] 
G. P. Karev, A. S. Novozhilov and F. S. Berezovskaya, On the asymptotic behavior of the solutions to the replicator equation, Mathematical Medicine and Biology, (2010), in press, arXiv:0906.4986. 
[22] 
J. Maynard Smith, "Evolution and the Theory of Games," Cambridge University Press, 1982. 
[23] 
J. Maynard Smith and G. R. Price, The logic of animal conflict, Nature, 246 (1973), 1518. doi: 10.1038/246015a0. 
[24] 
S. G. Mikhlin, "Variational Methods in Mathematical Physics," A Pergamon Press Book, The Macmillan Co., New York, 1964. 
[25] 
P. Schuster and K. Sigmund, Replicator dynamics, Journal of Theoretical Biology, 100 (1983), 533538. doi: 10.1016/00225193(83)904459. 
[26] 
Y. M. Svirezhev and V. P. Passekov, "Fundamentals of Mathematical Evolutionary Genetics," Mathematics and its Applications (Soviet Series), 22, Kluwer Academic Publishers, Dordrecht, 1990. 
[27] 
P. Taylor and L. Jonker, Evolutionarily stable strategies and game dynamics, Mathematical Biosciences, 40 (1978), 145156. doi: 10.1016/00255564(78)900779. 
[28] 
G. T. Vickers, Spatial patterns and ESS's, Journal of Theoretical Biology, 140 (1989), 129135. doi: 10.1016/S00225193(89)800335. 
[29] 
E. D. Weinberger, Spatial stability analysis of Eigen's quasispecies model and the less than five membered hypercycle under global population regulation, Bulletin of Mathematical Biology, 53 (1991), 623638. 
[1] 
Takanori Ide, Kazuhiro Kurata, Kazunaga Tanaka. Multiple stable patterns for some reactiondiffusion equation in disrupted environments. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 93116. doi: 10.3934/dcds.2006.14.93 
[2] 
Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reactiondiffusion equation. Evolution Equations and Control Theory, 2015, 4 (1) : 3959. doi: 10.3934/eect.2015.4.39 
[3] 
Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reactiondiffusion systems with boundary equilibria. Discrete and Continuous Dynamical Systems  B, 2021, 26 (3) : 13051335. doi: 10.3934/dcdsb.2020164 
[4] 
M. Grasselli, V. Pata. A reactiondiffusion equation with memory. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 10791088. doi: 10.3934/dcds.2006.15.1079 
[5] 
Hideki Murakawa. Fast reaction limit of reactiondiffusion systems. Discrete and Continuous Dynamical Systems  S, 2021, 14 (3) : 10471062. doi: 10.3934/dcdss.2020405 
[6] 
Guo Lin, Haiyan Wang. Traveling wave solutions of a reactiondiffusion equation with statedependent delay. Communications on Pure and Applied Analysis, 2016, 15 (2) : 319334. doi: 10.3934/cpaa.2016.15.319 
[7] 
Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reactiondiffusionadvection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure and Applied Analysis, 2017, 16 (6) : 23572376. doi: 10.3934/cpaa.2017116 
[8] 
Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reactiondiffusionadvection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure and Applied Analysis, 2018, 17 (1) : 285317. doi: 10.3934/cpaa.2018017 
[9] 
Peter Poláčik, Eiji Yanagida. Stable subharmonic solutions of reactiondiffusion equations on an arbitrary domain. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 209218. doi: 10.3934/dcds.2002.8.209 
[10] 
Elvio Accinelli, Bruno Bazzano, Franco Robledo, Pablo Romero. Nash Equilibrium in evolutionary competitive models of firms and workers under external regulation. Journal of Dynamics and Games, 2015, 2 (1) : 132. doi: 10.3934/jdg.2015.2.1 
[11] 
ChingShan Chou, YongTao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reactiondiffusion systems. Discrete and Continuous Dynamical Systems  B, 2007, 7 (3) : 515525. doi: 10.3934/dcdsb.2007.7.515 
[12] 
Laurent Desvillettes, Klemens Fellner. Entropy methods for reactiondiffusion systems. Conference Publications, 2007, 2007 (Special) : 304312. doi: 10.3934/proc.2007.2007.304 
[13] 
A. Dall'Acqua. Positive solutions for a class of reactiondiffusion systems. Communications on Pure and Applied Analysis, 2003, 2 (1) : 6576. doi: 10.3934/cpaa.2003.2.65 
[14] 
Zhaosheng Feng. Traveling waves to a reactiondiffusion equation. Conference Publications, 2007, 2007 (Special) : 382390. doi: 10.3934/proc.2007.2007.382 
[15] 
Nick Bessonov, Gennady Bocharov, Tarik Mohammed Touaoula, Sergei Trofimchuk, Vitaly Volpert. Delay reactiondiffusion equation for infection dynamics. Discrete and Continuous Dynamical Systems  B, 2019, 24 (5) : 20732091. doi: 10.3934/dcdsb.2019085 
[16] 
María del Mar González, Regis Monneau. Slow motion of particle systems as a limit of a reactiondiffusion equation with halfLaplacian in dimension one. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 12551286. doi: 10.3934/dcds.2012.32.1255 
[17] 
Dieter Bothe, Michel Pierre. The instantaneous limit for reactiondiffusion systems with a fast irreversible reaction. Discrete and Continuous Dynamical Systems  S, 2012, 5 (1) : 4959. doi: 10.3934/dcdss.2012.5.49 
[18] 
Razvan Gabriel Iagar, Ariel Sánchez. Eternal solutions for a reactiondiffusion equation with weighted reaction. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 14651491. doi: 10.3934/dcds.2021160 
[19] 
Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reactiondiffusion equation with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 56155648. doi: 10.3934/dcds.2018246 
[20] 
Yuri Latushkin, Roland Schnaubelt, Xinyao Yang. Stable foliations near a traveling front for reaction diffusion systems. Discrete and Continuous Dynamical Systems  B, 2017, 22 (8) : 31453165. doi: 10.3934/dcdsb.2017168 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]