# American Institute of Mathematical Sciences

2011, 8(3): 723-732. doi: 10.3934/mbe.2011.8.723

## Optimal nutritional intake for fetal growth

 1 Department of Mathematics, Mahidol University, Bangkok 10400, Thailand & National Research Centre for Growth and Development, Auckland, New Zealand 2 National Research Centre for Growth and Development & Institute of Information and Mathematical Sciences, Massey University, Private Bag 102904, Albany, Auckland 3 Institute of Information and Mathematical Sciences, Massey University, Private Bag 102904, Albany, Auckland, New Zealand 4 Department of Mathematics, Mahidol University, Bangkok 10400, Thailand & Center of Excellence in Mathematics,, PERDO Commission on Higher Education, Si Ayudhya Rd., Bangkok 10400, New Zealand

Received  August 2010 Revised  November 2010 Published  June 2011

The regular nutritional intake of an expectant mother clearly affects the weight development of the fetus. Assuming the growth of the fetus follows a deterministic growth law, like a logistic equation, albeit dependent on the nutritional intake, the ideal solution is usually determined by the birth-weight being pre-assigned, for example, as a percentage of the mother's average weight. This problem can then be specified as an optimal control problem with the daily intake as the control, which appears in a Michaelis-Menten relationship, for which there are well-developed procedures to follow. The best solution is determined by requiring minimum total intake under which the preassigned birth weight is reached. The algorithm has been generalized to the case where the fetal weight depends in a detailed way on the cumulative intake, suitably discounted according to the history. The optimality system is derived and then solved numerically using an iterative method for the specific values of parameter. The procedure is generic and can be adapted to any growth law and any parameterisation obtained by the detailed physiology.
Citation: Chanakarn Kiataramkul, Graeme Wake, Alona Ben-Tal, Yongwimon Lenbury. Optimal nutritional intake for fetal growth. Mathematical Biosciences & Engineering, 2011, 8 (3) : 723-732. doi: 10.3934/mbe.2011.8.723
##### References:
 [1] C. W. Clark, "Bioeconomics: The Optimal Management of Renewable Resources," Wiley, New York, 1976. [2] H. R. Joshi, Optimal control of an HIV immunology model, Optim. Control Appl. Methods, 23 (2002), 199-213. doi: 10.1002/oca.710. [3] E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model, Discrete and Continuous Dynamical Systems-Series B, 2 (2002), 473-482. doi: 10.3934/dcdsb.2002.2.473. [4] K. L. Gatford, J. A. Owens, S. Li, T. J. M. Moss, J. P. Newnham, J. R. G. Challis and D. M. Sloboda, Repeated betamethasone treatment of pregnant sheep programspersistent reductions in circulating IGF-I and IGF-binding proteins in progeny, Am. J. Physiol. Endocrinol. Metab., 295 (2008), 170-178. doi: 10.1152/ajpendo.00047.2008. [5] D. Kirschner, S. Lenhart and S. Serbis, Optimal control of the chemotherapy of HIV, J. Math. Biol., 35 (1997), 775-792. doi: 10.1007/s002850050076. [6] S. Lenhart and J. T. Workman, Optimal control applied to biological models, in "Chapman & Hall/CRC Mathematical and Computational Biology Series," Chapman & Hall/CRC, Boca Raton, FL, 2007. [7] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelize and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes" (ed. L. W. Neustadt), Interscience Publishers John Wiley & Sons, Inc., New York-London, 1962. [8] D. A. Redmer, J. M. Wallace and L. P. Reynolds, Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development, Domestic Animal Endocrinology, 27 (2004), 199-217. doi: 10.1016/j.domaniend.2004.06.006. [9] G. Wu, F. W. Bazer, T. A. Cudd, C. J. Meininger and T. E. Spencer, Maternal nutrition and fetal development, Journal of Nutrition, 134 (2004), 2169-2172. [10] G. Wu, F. W. Bazer, J. M. Wallace and T. E. Spencer, Board-invited review: Intraurine growth retardation: Implications for the animal sciences, Journal of Animal Science, 84 (2006), 2316-2337. doi: 10.2527/jas.2006-156. [11] G. Zaman, Y. H. Kang and I. H. Jung, Optimal vaccination and treatment in the SIR epidemic model, Proc. KSIAM, 3 (2007), 31-33.

show all references

##### References:
 [1] C. W. Clark, "Bioeconomics: The Optimal Management of Renewable Resources," Wiley, New York, 1976. [2] H. R. Joshi, Optimal control of an HIV immunology model, Optim. Control Appl. Methods, 23 (2002), 199-213. doi: 10.1002/oca.710. [3] E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model, Discrete and Continuous Dynamical Systems-Series B, 2 (2002), 473-482. doi: 10.3934/dcdsb.2002.2.473. [4] K. L. Gatford, J. A. Owens, S. Li, T. J. M. Moss, J. P. Newnham, J. R. G. Challis and D. M. Sloboda, Repeated betamethasone treatment of pregnant sheep programspersistent reductions in circulating IGF-I and IGF-binding proteins in progeny, Am. J. Physiol. Endocrinol. Metab., 295 (2008), 170-178. doi: 10.1152/ajpendo.00047.2008. [5] D. Kirschner, S. Lenhart and S. Serbis, Optimal control of the chemotherapy of HIV, J. Math. Biol., 35 (1997), 775-792. doi: 10.1007/s002850050076. [6] S. Lenhart and J. T. Workman, Optimal control applied to biological models, in "Chapman & Hall/CRC Mathematical and Computational Biology Series," Chapman & Hall/CRC, Boca Raton, FL, 2007. [7] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelize and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes" (ed. L. W. Neustadt), Interscience Publishers John Wiley & Sons, Inc., New York-London, 1962. [8] D. A. Redmer, J. M. Wallace and L. P. Reynolds, Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development, Domestic Animal Endocrinology, 27 (2004), 199-217. doi: 10.1016/j.domaniend.2004.06.006. [9] G. Wu, F. W. Bazer, T. A. Cudd, C. J. Meininger and T. E. Spencer, Maternal nutrition and fetal development, Journal of Nutrition, 134 (2004), 2169-2172. [10] G. Wu, F. W. Bazer, J. M. Wallace and T. E. Spencer, Board-invited review: Intraurine growth retardation: Implications for the animal sciences, Journal of Animal Science, 84 (2006), 2316-2337. doi: 10.2527/jas.2006-156. [11] G. Zaman, Y. H. Kang and I. H. Jung, Optimal vaccination and treatment in the SIR epidemic model, Proc. KSIAM, 3 (2007), 31-33.
 [1] Mariko Arisawa, Hitoshi Ishii. Some properties of ergodic attractors for controlled dynamical systems. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 43-54. doi: 10.3934/dcds.1998.4.43 [2] Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079 [3] Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations and Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83 [4] Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations and Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59 [5] Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443 [6] Tomás Caraballo, Francisco Morillas, José Valero. Asymptotic behaviour of a logistic lattice system. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4019-4037. doi: 10.3934/dcds.2014.34.4019 [7] Shivam Dhama, Chetan D. Pahlajani. Approximation of linear controlled dynamical systems with small random noise and fast periodic sampling. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022018 [8] P.K. Newton. The dipole dynamical system. Conference Publications, 2005, 2005 (Special) : 692-699. doi: 10.3934/proc.2005.2005.692 [9] Ellina Grigorieva, Evgenii Khailov. A nonlinear controlled system of differential equations describing the process of production and sales of a consumer good. Conference Publications, 2003, 2003 (Special) : 359-364. doi: 10.3934/proc.2003.2003.359 [10] Dina Kalinichenko, Volker Reitmann, Sergey Skopinov. Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion. Conference Publications, 2013, 2013 (special) : 407-414. doi: 10.3934/proc.2013.2013.407 [11] Jie Zhao. Large time behavior of solution to quasilinear chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1737-1755. doi: 10.3934/dcds.2020091 [12] Liangchen Wang, Yuhuan Li, Chunlai Mu. Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 789-802. doi: 10.3934/dcds.2014.34.789 [13] Hai-Yang Jin, Zhi-An Wang. The Keller-Segel system with logistic growth and signal-dependent motility. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3023-3041. doi: 10.3934/dcdsb.2020218 [14] Giuseppe Viglialoro, Thomas E. Woolley. Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3023-3045. doi: 10.3934/dcdsb.2017199 [15] Ke Lin, Chunlai Mu. Global dynamics in a fully parabolic chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5025-5046. doi: 10.3934/dcds.2016018 [16] Wenji Zhang, Pengcheng Niu. Asymptotics in a two-species chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4281-4298. doi: 10.3934/dcdsb.2020288 [17] Xiangdong Zhao. Global boundedness of classical solutions to a logistic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5095-5100. doi: 10.3934/dcdsb.2020334 [18] Dorota Bors, Robert Stańczy. Dynamical system modeling fermionic limit. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 45-55. doi: 10.3934/dcdsb.2018004 [19] Xiangnan He, Wenlian Lu, Tianping Chen. On transverse stability of random dynamical system. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 701-721. doi: 10.3934/dcds.2013.33.701 [20] Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Dynamical behaviour of a large complex system. Communications on Pure and Applied Analysis, 2008, 7 (2) : 249-265. doi: 10.3934/cpaa.2008.7.249

2018 Impact Factor: 1.313