Citation: |
[1] |
L. Arnold, "Random Dynamical Systems," Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. |
[2] |
P. Ashwin, J. Buescu and I. Stewart, From attractor to chaotic saddle: A tale of transverse instability, Nonlinearity, 9 (1996), 703-737.doi: 10.1088/0951-7715/9/3/006. |
[3] |
C. Conley, "Isolated Invariant Sets and the Morse Index," CBMS Regional Conference Series in Mathematics, 38, Amer. Math. Soc., Providence, RI, 1978. |
[4] |
B. M. Garay and J. Hofbauer, Robust permanence for ecological differential equations, minimax, and discretizations, SIAM J. Math. Anal., 34 (2003), 1007-1039.doi: 10.1137/S0036141001392815. |
[5] |
J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal., 20 (1989), 388-395.doi: 10.1137/0520025. |
[6] |
M. W. Hirsch, H. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity and strong repellors for semidynamical systems, J. Dynamics and Diff. Eqns., 13 (2001), 107-131.doi: 10.1023/A:1009044515567. |
[7] |
J. Hofbauer and S. J. Schreiber, Robust permanence for interacting structured populations, J. Diff. Eqns., 248 (2010), 1955-1971.doi: 10.1016/j.jde.2009.11.010. |
[8] |
E. O. Jones, A. White and M. Boots, Interference and the persistence of vertically transmitted parasites, J. Theor. Biol., 246 (2007), 10-17.doi: 10.1016/j.jtbi.2006.12.007. |
[9] |
A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems," Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995. |
[10] |
J. F. Reineck, Continuation to gradient flows, Duke Math. J., 64 (1991), 261-269.doi: 10.1215/S0012-7094-91-06413-6. |
[11] |
P. L. Salceanu, "Lyapunov Exponents and Persistence in Dynamical Systems with Applications to some Discrete Time Models," Ph.D thesis, Arizona State University, 2009. |
[12] |
P. L. Salceanu and H. L. Smith, Lyapunov exponents and persistence in discrete dynamical systems, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 187-203.doi: 10.3934/dcdsb.2009.12.187. |
[13] |
P. L. Salceanu and H. L. Smith, Lyapunov exponents and uniform weak normally repelling invariant sets, in "Positive Systems," Lecture Notes in Control and Inform. Sci., 389, Springer, Berlin, (2009), 17-27. |
[14] |
S. Schreiber, Criteria for $C^r$ robust permanence, J. Differential Equations, 162 (2000), 400-426.doi: 10.1006/jdeq.1999.3719. |
[15] |
E. Seneta, "Non-negative Matrices. An Introduction to Theory and Applications," Halsted Press, New York, 1973. |
[16] |
H. L. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems," Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1995. |
[17] |
H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition," Cambridge Studies in Mathematical Biology, 13, Cambridge University Press, Cambridge, 1995. |
[18] |
H. L. Smith and H. Thieme, "Dynamical Systems and Population Persistence," Graduate Studies in Mathematics, 118, Amer. Math. Soc., Providence, RI, 2011. |
[19] |
H. L. Smith, X.-Q. Zhao, Robust persistence for semi-dynamical systems, Nonlinear Analysis, 47 (2001), 6169-6179.doi: 10.1016/S0362-546X(01)00678-2. |
[20] |
H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model), SIAM J. Math. Anal., 24 (1993), 407-435.doi: 10.1137/0524026. |
[21] |
X.-Q. Zhao, "Dynamical Systems in Population Biology," CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 16, Springer-Verlag, New York, 2003. |