-
Previous Article
Defining candidate drug characteristics for Long-QT (LQT3) syndrome
- MBE Home
- This Issue
-
Next Article
Global dynamics of the chemostat with different removal rates and variable yields
The replicability of oncolytic virus: Defining conditions in tumor virotherapy
1. | Mathematics Department, College of William and Mary, Williamsburg, VA 23187, United States |
References:
[1] |
M. Aghi and R. L. Martuza, Oncolytic viral therapy-the clinical experience, Oncogene, 24 (2005), 7802-7816.
doi: 10.1038/sj.onc.1209037. |
[2] |
Z. Bajzer, T. Carr, K. Josic, S. J. Russel and D. Dingli, Modeling of cancer virotherapy with recombinant measles viruses, J. Theoretical Biology, 252 (2008), 109-122.
doi: 10.1016/j.jtbi.2008.01.016. |
[3] |
J. Carr, "Applications of Centre Manifold Theory," Applied Mathematics Sciences, 35, Springer-Verlag, New York-Berlin, 1981. |
[4] |
E. A. Chiocca, Oncolytic viruses, Nature Reviews, Cancer, 2 (2002), 938-950.
doi: 10.1038/nrc948. |
[5] |
D. Dingli, M. D. Cascino, K. Josić, S. J. Russell and Z. Bajzer, Mathematical modeling of cancer radiovirotherapy, Math. Biosci., 199 (2006), 55-78.
doi: 10.1016/j.mbs.2005.11.001. |
[6] |
A. Friedman, J. P. Tian, G. Fulci, E. A. Chiocca and J. Wang, Glioma virotherapy: Effects of innate immune suppression and increased viral replication capacity, Cancer Research, 66 (2006), 2314-2319.
doi: 10.1158/0008-5472.CAN-05-2661. |
[7] |
B. A. Fuchs and V. I. Levin, "Functions of A Complex Variable," Pergamon Press, London, 1961. |
[8] |
G. Fulci, et al, Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses, PNAS Proceedings of the National Academy of Sciences of the United States of America, 103 (2006), 12873-12878. |
[9] |
B. D. Hassard, N. D. Hazzarinoff and Y.-H. Wan, "Theory and Applications of Hopf Bifurcation," Cambridge, 1981. |
[10] |
H. Kambara, H. Okano, E. A. Chiocca and Y. Saeki, An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor, Cancer Res., 65 (2005), 2832-2839.
doi: 10.1158/0008-5472.CAN-04-3227. |
[11] |
A. S. Novozhilov, F. S. Berezovskaya, E. V. Koonin and G. P. Karev, Mathematical modeling of tumor therapy with oncolytic viruses: Regimes with complete tumor elimination within the framework of deterministic models, Biology Direct, 1 (2006), 1-18.
doi: 10.1186/1745-6150-1-6. |
[12] |
Y. Tao and Q. Guo, The competitive dynamics between tumor cells, a replication-competent virus and an immune response, J. Math. Biol., 51 (2005), 37-74.
doi: 10.1007/s00285-004-0310-6. |
[13] |
D. Vasiliu and J. P. Tian, Periodic solutions of a model for tumor virotherapy, Discrete and Continuous Dynamical Systems Ser. S, 4 (2011), 1587-1597.
doi: 10.3934/dcdss.2011.4.1587. |
[14] |
L. M. Wein, J. T. Wu and D. H. Kirn, Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: Implications for virus design and delivery, Cancer Res., 63 (2003), 1317-1324. |
[15] |
D. Wodarz, Viruses as antitumor weapons: Defining conditions for tumor remission, Cancer Res., 61 (2001), 3501-3507. |
[16] |
D. Wodarz and N. Komarova, Towards predictive computational models of oncolytic virus therapy: Basis for experimental validation and model selection, PloS ONE, 4 (2009), e4271.
doi: 10.1371/journal.pone.0004271. |
[17] |
D. Wodarz, Gene therapy for killing p53-negative cancer cells: Use of replicating versus nonreplicating agents, Hum. Gene Ther., 14 (2003), 153-159.
doi: 10.1089/104303403321070847. |
[18] |
J. T. Wu, H. M. Byrne, D. H. Kirn and L. M. Wein, Modeling and analysis of a virus that replicates selectively in tumor cells, Bull. Math. Biol., 63 (2001), 731-768.
doi: 10.1006/bulm.2001.0245. |
show all references
References:
[1] |
M. Aghi and R. L. Martuza, Oncolytic viral therapy-the clinical experience, Oncogene, 24 (2005), 7802-7816.
doi: 10.1038/sj.onc.1209037. |
[2] |
Z. Bajzer, T. Carr, K. Josic, S. J. Russel and D. Dingli, Modeling of cancer virotherapy with recombinant measles viruses, J. Theoretical Biology, 252 (2008), 109-122.
doi: 10.1016/j.jtbi.2008.01.016. |
[3] |
J. Carr, "Applications of Centre Manifold Theory," Applied Mathematics Sciences, 35, Springer-Verlag, New York-Berlin, 1981. |
[4] |
E. A. Chiocca, Oncolytic viruses, Nature Reviews, Cancer, 2 (2002), 938-950.
doi: 10.1038/nrc948. |
[5] |
D. Dingli, M. D. Cascino, K. Josić, S. J. Russell and Z. Bajzer, Mathematical modeling of cancer radiovirotherapy, Math. Biosci., 199 (2006), 55-78.
doi: 10.1016/j.mbs.2005.11.001. |
[6] |
A. Friedman, J. P. Tian, G. Fulci, E. A. Chiocca and J. Wang, Glioma virotherapy: Effects of innate immune suppression and increased viral replication capacity, Cancer Research, 66 (2006), 2314-2319.
doi: 10.1158/0008-5472.CAN-05-2661. |
[7] |
B. A. Fuchs and V. I. Levin, "Functions of A Complex Variable," Pergamon Press, London, 1961. |
[8] |
G. Fulci, et al, Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses, PNAS Proceedings of the National Academy of Sciences of the United States of America, 103 (2006), 12873-12878. |
[9] |
B. D. Hassard, N. D. Hazzarinoff and Y.-H. Wan, "Theory and Applications of Hopf Bifurcation," Cambridge, 1981. |
[10] |
H. Kambara, H. Okano, E. A. Chiocca and Y. Saeki, An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor, Cancer Res., 65 (2005), 2832-2839.
doi: 10.1158/0008-5472.CAN-04-3227. |
[11] |
A. S. Novozhilov, F. S. Berezovskaya, E. V. Koonin and G. P. Karev, Mathematical modeling of tumor therapy with oncolytic viruses: Regimes with complete tumor elimination within the framework of deterministic models, Biology Direct, 1 (2006), 1-18.
doi: 10.1186/1745-6150-1-6. |
[12] |
Y. Tao and Q. Guo, The competitive dynamics between tumor cells, a replication-competent virus and an immune response, J. Math. Biol., 51 (2005), 37-74.
doi: 10.1007/s00285-004-0310-6. |
[13] |
D. Vasiliu and J. P. Tian, Periodic solutions of a model for tumor virotherapy, Discrete and Continuous Dynamical Systems Ser. S, 4 (2011), 1587-1597.
doi: 10.3934/dcdss.2011.4.1587. |
[14] |
L. M. Wein, J. T. Wu and D. H. Kirn, Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: Implications for virus design and delivery, Cancer Res., 63 (2003), 1317-1324. |
[15] |
D. Wodarz, Viruses as antitumor weapons: Defining conditions for tumor remission, Cancer Res., 61 (2001), 3501-3507. |
[16] |
D. Wodarz and N. Komarova, Towards predictive computational models of oncolytic virus therapy: Basis for experimental validation and model selection, PloS ONE, 4 (2009), e4271.
doi: 10.1371/journal.pone.0004271. |
[17] |
D. Wodarz, Gene therapy for killing p53-negative cancer cells: Use of replicating versus nonreplicating agents, Hum. Gene Ther., 14 (2003), 153-159.
doi: 10.1089/104303403321070847. |
[18] |
J. T. Wu, H. M. Byrne, D. H. Kirn and L. M. Wein, Modeling and analysis of a virus that replicates selectively in tumor cells, Bull. Math. Biol., 63 (2001), 731-768.
doi: 10.1006/bulm.2001.0245. |
[1] |
Jixun Chu, Pierre Magal. Hopf bifurcation for a size-structured model with resting phase. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4891-4921. doi: 10.3934/dcds.2013.33.4891 |
[2] |
Pavol Bokes. Exact and WKB-approximate distributions in a gene expression model with feedback in burst frequency, burst size, and protein stability. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2129-2145. doi: 10.3934/dcdsb.2021126 |
[3] |
Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997 |
[4] |
Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045 |
[5] |
John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 |
[6] |
Pavol Bokes. Maintaining gene expression levels by positive feedback in burst size in the presence of infinitesimal delay. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5539-5552. doi: 10.3934/dcdsb.2019070 |
[7] |
Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152 |
[8] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[9] |
Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098 |
[10] |
Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 71-78. doi: 10.3934/proc.2011.2011.71 |
[11] |
R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure and Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147 |
[12] |
Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197 |
[13] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[14] |
Begoña Alarcón, Víctor Guíñez, Carlos Gutierrez. Hopf bifurcation at infinity for planar vector fields. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 247-258. doi: 10.3934/dcds.2007.17.247 |
[15] |
Bing Zeng, Pei Yu. A hierarchical parametric analysis on Hopf bifurcation of an epidemic model. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022069 |
[16] |
Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026 |
[17] |
Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325 |
[18] |
Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735 |
[19] |
Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121 |
[20] |
Jaume Llibre, Claudio A. Buzzi, Paulo R. da Silva. 3-dimensional Hopf bifurcation via averaging theory. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 529-540. doi: 10.3934/dcds.2007.17.529 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]