-
Previous Article
A mathematical model of the Purkinje-Muscle Junctions
- MBE Home
- This Issue
- Next Article
Controlling malaria with indoor residual spraying in spatially heterogenous environments
1. | Department of Mathematics, The University of Ottawa, 585 King Edward Ave Ottawa, ON K1N 6N5, Canada |
2. | Department of Mathematics and Faculty of Medicine, The University of Ottawa, 585 King Edward Ave Ottawa, ON K1N 6N5, Canada |
References:
[1] |
N. Asmer, “Partial Differential Equations with Fourier Series and Boundary Value Problems,” Pearson Preatice Hall, USA, 2005. |
[2] |
D. D. Bainov and P. S. Simeonov, “Systems with Impulsive Effect,” Ellis Horwood Ltd, Chichester, 1989. |
[3] |
D. D. Bainov and P. S. Simeonov, “Impulsive Differential Equations: Periodic Solutions and Applications,” Longman Scientific and Technical, Burnt Mill, 1993. |
[4] |
D. D. Bainov and P. S. Simeonov, “Impulsive Differential Equations: Asymptotic Properties of the Solutions,” World Scientific, Singapore, 1995. |
[5] |
P. F. Beales, V. S. Orlov and R. L. Kouynetsov, eds., “Malaria and Planning for its Control in Tropical Africa,” Moscow, WHO and UNDP, 1989. |
[6] |
J. G. Breman, M. S. Alilio and A. Mills, Conquering the intolerable burden of malaria: What's new, what's needed: A summary, Am. J. Trop. Med. Hyg., 71 (2004), 1-15. |
[7] |
R. Carter, K. N. Mendis and D. Roberts, Spatial targeting of interventions against malaria, Bulletin of the World Health Organization, 78 (2000), 1401-1411. |
[8] |
J. De Zuletta, G. W. Kafuko, A. W. R. McCrae, et al., A malaria eradication experiment in the highlands of Kigezi (Uganda), East African Medical Journal, 41 (1964), 102-120. |
[9] |
R. El Attar, “Special Functions and Orthogonal Polynomials,” Lula Press, USA, 2006. |
[10] |
M. Finkel, Malaria: Stopping a global killer, National Geographic, July 2007. |
[11] |
W. A. Foster, Mosquito sugar feeding and reproductive energetics, Annu. Rev. Entomol., 40 (1995), 443-474. |
[12] |
C. Garrett-Jones, Prognosis for interruption of malaria transmission through assessment of the mosquito's vectorial capacity, Nature, 204 (1964), 1173-1174. |
[13] |
T. A. Ghebreyesus, M. Haile, K. H. Witten, A. Getachew, M. Yohannes, S. W. Lindsay and P. Byass, Household risk factors for malaria among children in the Ethiopian highlands, Trans. R. Soc. Trop. Med. Hyg., 94 (2000), 17-21. |
[14] |
, “Global Malaria Programme: Indoor Residual Spraying,” Report of the World Health Organization, 2006. Available from: http://whqlibdoc.who.int/hq/2006/WHO_HTM_MAL_2006.1112_eng.pdf. |
[15] |
G. Hasibeder and C. Dye, Population dynamics of mosquito-borne disease: Persistence in a completely heterogeneous environment, Theor. Pop. Biol., 33 (1988), 31-53. |
[16] |
J. Keiser, J. Utzinger, M. Caldas de Castro, T. A. Smith, M. Tanner and B. H. Singer, Urbanization in sub-Saharan Africa and implication for malaria control, Am. J. Trop. Med. Hyg., 71 (2 Suppl) (2004), 118-127. |
[17] |
R. I. Kouznetsov, Malaria control by application of indoor spraying of residual insecticides in tropical Africa and its impact on population health, Tropical Doctor, 7 (1977), 81-91. |
[18] |
V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, “Theory of Impulsive Differential Equations,” World Scientific, Singapore, 1989. |
[19] |
A. D. Lopez, C. D. Mathers, M. Ezzati, D. T. Jamison and C. J. Murray, Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data, Lancet, 367 (2006), 1747-1757.
doi: 10.1016/S0140-6736(06)68770-9. |
[20] |
M. L. Mabaso, B. Sharp and C. Lengeler, Historical review of malarial control in southern Africa with emphasis on the use of indoor residual house-spraying, Trop. Med. Int. Health, 9 (2004), 846-856. |
[21] |
K. Macintyre, J. Keating, Y. B. Okbaldt, M. Zerom, S. Sosler, T. Ghebremeskel and T. P. Eisele, Rolling out insecticide treated nets in Eritrea: Examining the determinants of possession and use in malarious zones during the rainy season, Trop. Med. Int. Health, 11 (2006), 824-833. |
[22] |
N. Maidana and H. Yang, A spatial model to describe the dengue propagation, TEMA Tend. Mat. Apl. Comput., 8 (2007), 83-92. |
[23] |
E. A. C. Newton and P. Rieter, A model of the transmission of Dengue Fever with an evaluation of the impact of Ultra-Low Volume (ULV) insecticide applications on Dengue epidemics, Am. J. Trop. Med. Hyg., 47 (1992), 709-720. |
[24] |
A. Polyanin and A. Manzhirov, “Handbook of Integral Equations,” 2nd edition, Chapman and Hall/CRC, 2008.
doi: 10.1201/9781420010558. |
[25] |
K. D. Silué, G. Raso, A. Yapi, P. Vounatsou, M. Tanner, E. K. Ńgoran and J. Utzinger, Spatially-explicit risk profiling of Plasmodium falciparum infections at a small scale: A geostatistical modelling approach, Malar J., 7 (2008), 111.
doi: 10.1186/1475-2875-7-111. |
[26] |
R. J. Smith?, Could low-efficacy malaria vaccines increase secondary infections in endemic areas?, in “Mathematical Modeling of Biological Systems" |
[27] |
R. J. Smith? and S. D. Hove-Musekwa, Determining effective spraying periods to control malaria via indoor residual spraying in sub-Saharan Africa, Journal of Applied Mathematics and Decision Sciences, 2008 (2008), 19 pp. |
[28] |
R. J. Smith? and E. J. Schwartz, Predicting the potential impact of a cytotoxic T-lymphocyte HIV vaccine: How often should you vaccinate and how strong should the vaccine be?, Math. Biosci., 212 (2008), 180-187. |
[29] |
R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint and S. I. Hay, The global distribution of clinical episodes of Plasmodium falciparum malaria, Nature, 434 (2005), 214-217. |
[30] |
P. I. Trigg and A. V. Kondrachine, Commentary: Malaria control in the 1990s, Bull. World Health Organ., 76 (1998), 11-16. |
[31] |
, “Using Geographical Information Systems for Indoor Residual Spray Area Mapping,” Training Report for the Zambia Ministry of Health, 2007, Available from: http://www.macepalearningcommunity.org/files/IRSGISTrainingReportZambia.pdf. |
show all references
References:
[1] |
N. Asmer, “Partial Differential Equations with Fourier Series and Boundary Value Problems,” Pearson Preatice Hall, USA, 2005. |
[2] |
D. D. Bainov and P. S. Simeonov, “Systems with Impulsive Effect,” Ellis Horwood Ltd, Chichester, 1989. |
[3] |
D. D. Bainov and P. S. Simeonov, “Impulsive Differential Equations: Periodic Solutions and Applications,” Longman Scientific and Technical, Burnt Mill, 1993. |
[4] |
D. D. Bainov and P. S. Simeonov, “Impulsive Differential Equations: Asymptotic Properties of the Solutions,” World Scientific, Singapore, 1995. |
[5] |
P. F. Beales, V. S. Orlov and R. L. Kouynetsov, eds., “Malaria and Planning for its Control in Tropical Africa,” Moscow, WHO and UNDP, 1989. |
[6] |
J. G. Breman, M. S. Alilio and A. Mills, Conquering the intolerable burden of malaria: What's new, what's needed: A summary, Am. J. Trop. Med. Hyg., 71 (2004), 1-15. |
[7] |
R. Carter, K. N. Mendis and D. Roberts, Spatial targeting of interventions against malaria, Bulletin of the World Health Organization, 78 (2000), 1401-1411. |
[8] |
J. De Zuletta, G. W. Kafuko, A. W. R. McCrae, et al., A malaria eradication experiment in the highlands of Kigezi (Uganda), East African Medical Journal, 41 (1964), 102-120. |
[9] |
R. El Attar, “Special Functions and Orthogonal Polynomials,” Lula Press, USA, 2006. |
[10] |
M. Finkel, Malaria: Stopping a global killer, National Geographic, July 2007. |
[11] |
W. A. Foster, Mosquito sugar feeding and reproductive energetics, Annu. Rev. Entomol., 40 (1995), 443-474. |
[12] |
C. Garrett-Jones, Prognosis for interruption of malaria transmission through assessment of the mosquito's vectorial capacity, Nature, 204 (1964), 1173-1174. |
[13] |
T. A. Ghebreyesus, M. Haile, K. H. Witten, A. Getachew, M. Yohannes, S. W. Lindsay and P. Byass, Household risk factors for malaria among children in the Ethiopian highlands, Trans. R. Soc. Trop. Med. Hyg., 94 (2000), 17-21. |
[14] |
, “Global Malaria Programme: Indoor Residual Spraying,” Report of the World Health Organization, 2006. Available from: http://whqlibdoc.who.int/hq/2006/WHO_HTM_MAL_2006.1112_eng.pdf. |
[15] |
G. Hasibeder and C. Dye, Population dynamics of mosquito-borne disease: Persistence in a completely heterogeneous environment, Theor. Pop. Biol., 33 (1988), 31-53. |
[16] |
J. Keiser, J. Utzinger, M. Caldas de Castro, T. A. Smith, M. Tanner and B. H. Singer, Urbanization in sub-Saharan Africa and implication for malaria control, Am. J. Trop. Med. Hyg., 71 (2 Suppl) (2004), 118-127. |
[17] |
R. I. Kouznetsov, Malaria control by application of indoor spraying of residual insecticides in tropical Africa and its impact on population health, Tropical Doctor, 7 (1977), 81-91. |
[18] |
V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, “Theory of Impulsive Differential Equations,” World Scientific, Singapore, 1989. |
[19] |
A. D. Lopez, C. D. Mathers, M. Ezzati, D. T. Jamison and C. J. Murray, Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data, Lancet, 367 (2006), 1747-1757.
doi: 10.1016/S0140-6736(06)68770-9. |
[20] |
M. L. Mabaso, B. Sharp and C. Lengeler, Historical review of malarial control in southern Africa with emphasis on the use of indoor residual house-spraying, Trop. Med. Int. Health, 9 (2004), 846-856. |
[21] |
K. Macintyre, J. Keating, Y. B. Okbaldt, M. Zerom, S. Sosler, T. Ghebremeskel and T. P. Eisele, Rolling out insecticide treated nets in Eritrea: Examining the determinants of possession and use in malarious zones during the rainy season, Trop. Med. Int. Health, 11 (2006), 824-833. |
[22] |
N. Maidana and H. Yang, A spatial model to describe the dengue propagation, TEMA Tend. Mat. Apl. Comput., 8 (2007), 83-92. |
[23] |
E. A. C. Newton and P. Rieter, A model of the transmission of Dengue Fever with an evaluation of the impact of Ultra-Low Volume (ULV) insecticide applications on Dengue epidemics, Am. J. Trop. Med. Hyg., 47 (1992), 709-720. |
[24] |
A. Polyanin and A. Manzhirov, “Handbook of Integral Equations,” 2nd edition, Chapman and Hall/CRC, 2008.
doi: 10.1201/9781420010558. |
[25] |
K. D. Silué, G. Raso, A. Yapi, P. Vounatsou, M. Tanner, E. K. Ńgoran and J. Utzinger, Spatially-explicit risk profiling of Plasmodium falciparum infections at a small scale: A geostatistical modelling approach, Malar J., 7 (2008), 111.
doi: 10.1186/1475-2875-7-111. |
[26] |
R. J. Smith?, Could low-efficacy malaria vaccines increase secondary infections in endemic areas?, in “Mathematical Modeling of Biological Systems" |
[27] |
R. J. Smith? and S. D. Hove-Musekwa, Determining effective spraying periods to control malaria via indoor residual spraying in sub-Saharan Africa, Journal of Applied Mathematics and Decision Sciences, 2008 (2008), 19 pp. |
[28] |
R. J. Smith? and E. J. Schwartz, Predicting the potential impact of a cytotoxic T-lymphocyte HIV vaccine: How often should you vaccinate and how strong should the vaccine be?, Math. Biosci., 212 (2008), 180-187. |
[29] |
R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint and S. I. Hay, The global distribution of clinical episodes of Plasmodium falciparum malaria, Nature, 434 (2005), 214-217. |
[30] |
P. I. Trigg and A. V. Kondrachine, Commentary: Malaria control in the 1990s, Bull. World Health Organ., 76 (1998), 11-16. |
[31] |
, “Using Geographical Information Systems for Indoor Residual Spray Area Mapping,” Training Report for the Zambia Ministry of Health, 2007, Available from: http://www.macepalearningcommunity.org/files/IRSGISTrainingReportZambia.pdf. |
[1] |
Jia Li. A malaria model with partial immunity in humans. Mathematical Biosciences & Engineering, 2008, 5 (4) : 789-801. doi: 10.3934/mbe.2008.5.789 |
[2] |
W. E. Fitzgibbon, M.E. Parrott, Glenn Webb. Diffusive epidemic models with spatial and age dependent heterogeneity. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 35-57. doi: 10.3934/dcds.1995.1.35 |
[3] |
Yu-Xia Wang, Wan-Tong Li. Combined effects of the spatial heterogeneity and the functional response. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 19-39. doi: 10.3934/dcds.2019002 |
[4] |
Yuan-Hang Su, Wan-Tong Li, Fei-Ying Yang. Effects of nonlocal dispersal and spatial heterogeneity on total biomass. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4929-4936. doi: 10.3934/dcdsb.2019038 |
[5] |
Xiaoyan Zhang, Yuxiang Zhang. Spatial dynamics of a reaction-diffusion cholera model with spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2625-2640. doi: 10.3934/dcdsb.2018124 |
[6] |
Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete and Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481 |
[7] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[8] |
Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703 |
[9] |
Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053 |
[10] |
Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515 |
[11] |
Barbara Abraham-Shrauner. Exact solutions of nonlinear partial differential equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 577-582. doi: 10.3934/dcdss.2018032 |
[12] |
Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167 |
[13] |
Runzhang Xu. Preface: Special issue on advances in partial differential equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : i-i. doi: 10.3934/dcdss.2021137 |
[14] |
Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345 |
[15] |
Roger M. Nisbet, Kurt E. Anderson, Edward McCauley, Mark A. Lewis. Response of equilibrium states to spatial environmental heterogeneity in advective systems. Mathematical Biosciences & Engineering, 2007, 4 (1) : 1-13. doi: 10.3934/mbe.2007.4.1 |
[16] |
Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182 |
[17] |
Stephen Pankavich, Christian Parkinson. Mathematical analysis of an in-host model of viral dynamics with spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1237-1257. doi: 10.3934/dcdsb.2016.21.1237 |
[18] |
Min Yang, Guanggan Chen. Finite dimensional reducing and smooth approximating for a class of stochastic partial differential equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1565-1581. doi: 10.3934/dcdsb.2019240 |
[19] |
Frédéric Mazenc, Christophe Prieur. Strict Lyapunov functions for semilinear parabolic partial differential equations. Mathematical Control and Related Fields, 2011, 1 (2) : 231-250. doi: 10.3934/mcrf.2011.1.231 |
[20] |
Paul Bracken. Connections of zero curvature and applications to nonlinear partial differential equations. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1165-1179. doi: 10.3934/dcdss.2014.7.1165 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]