Citation: |
[1] |
E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165. |
[2] |
V. Capasso and G. Serio, A generalization of the Kermack-McKendric deterministic epidemic model, Math. Biosci., 42 (1978), 43-61.doi: 10.1016/0025-5564(78)90006-8. |
[3] |
M. Giaquinta and G. Modica, "Mathematical Analysis. An Introduction to Functions of Several Variables," Birkhauser Boston, Inc., Boston, MA, 2009. |
[4] |
G. Huang and Y. Takeuchi, Global analysis on delay epidemiological dynamic models with nonlinear incidence, J. Math. Biol., 63 (2011), 125-139. |
[5] |
G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infection, SIAM J. Appl. Math., 70 (2010), 2693-2708.doi: 10.1137/090780821. |
[6] |
G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192-1207.doi: 10.1007/s11538-009-9487-6. |
[7] |
A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871-1886.doi: 10.1007/s11538-007-9196-y. |
[8] |
Y. Kuang, "Delay Differential Equations with Application in Population Dynamics," Dynamics in Science and Engineering, Academic Press, New York, 1993. |
[9] |
M. A. Safi and A. B. Gumel, Global asymptotic dynamics of a model of quarantine and isolation, Discrete Contin. Dyn. S., 14 (2010), 209-231.doi: 10.3934/dcdsb.2010.14.209. |
[10] |
H. L. Smith, "An Introduction to Delay Differential Equations with Applications to the Life Sciences," Texts in Applied Mathematics, Springer, New York, 2011.doi: 10.1007/978-1-4419-7646-8. |
[11] |
R. Xu and Y. Du, \ A delayed SIR epidemic model with saturation incidence and constant infectious period, J. Appl. Math. Comp., 35 (2010), 229-250.doi: 10.1007/s12190-009-0353-3. |
[12] |
R. Xu and Z. Ma, Global stability of a delayed SEIRS epidemic model with saturation incidence rate, Nonlinear Dynam., 61 (2010), 229-239.doi: 10.1007/s11071-009-9644-3. |
[13] |
F. Zhang, Z. Li and F. Zhang, Global stability of an SIR epidemic model with constant infectious period, Appl. Math. Comput, 199 (2008), 285-291.doi: 10.1016/j.amc.2007.09.053. |