Citation: |
[1] |
C. de Gooijer, W. Bakker, H. Beeftink and J. Tramper, Bioreactors in series: An overview of design procedures and practical applications, Enzyme and Microbial Technology, 18 (1996), 202-219. |
[2] |
C. de Gooijer, H. Beeftink and J. Tramper, Optimal design of a series of continuous stirred tank reactors containing immobilised growing cells, Biotechnology Letters, 18 (1996), 397-402. |
[3] |
P. Doran, Design of mixing systems for plant cell suspensions in stirred reactors, Biotechnology Progress, 15 (1999), 319-335. |
[4] |
A. Dramé, J. Harmand, A. Rapaport and C. Lobry, Multiple steady state profiles in interconnected biological systems, Mathematical and Computer Modelling of Dynamical Systems, 12 (2006), 379-393. |
[5] |
A. Dramé, C. Lobry, J. Harmand, A. Rapaport and F. Mazenc, Multiple stable equilibrium profiles in tubular bioreactors, Mathematical and Computer Modelling, 48 (2008), 1840-1853. |
[6] |
S. Foger, "Elements of Chemical Reaction Engineering," 4th edition, Prentice Hall, New York, 2008. |
[7] |
A. Grobicki and D. Stuckey, Hydrodynamic characteristics of the anaerobic baffled reactor, Water Research, 26 (1992), 371-378. |
[8] |
L. Grady, G. Daigger and H. Lim, "Biological Wastewater Treatment,'' 3nd edition, Environmental Science and Pollution Control Series, Marcel Dekker, New York, 1999. |
[9] |
D. Gravel, F. Guichard, M. Loreau and N. Mouquet, Source and sink dynamics in metaecosystems, Ecology, 91 (2010), 2172-2184. |
[10] |
I. Hanski, "Metapopulation Ecology,'' Oxford University Press, 1999. |
[11] |
J. Harmand, A. Rapaport and A. Trofino, Optimal design of two interconnected bioreactors-some new results, American Institute of Chemical Engineering Journal, 49 (1999), 1433-1450. |
[12] |
J. Harmand, A. Rapaport and A. Dramé, Optimal design of two interconnected enzymatic reactors, Journal of Process Control, 14 (2004), 785-794. |
[13] |
J. Harmand and D. Dochain, Towards a unified approach for the design of interconnected catalytic and auto-catalytic reactors, Computers and Chemical Engineering, 30 (2005), 70-82. |
[14] |
G. Hill and C. Robinson, Minimum tank volumes for CFST bioreactors in series, The Canadian Journal of Chemical Engineering, 67 (1989), 818-824. |
[15] |
W. Hu, K. Wlashchin, M. Betenbaugh, F. Wurm, G. Seth and W. Zhou, "Cellular Bioprocess Technology, Fundamentals and Frontier,'' Lectures Notes, University of Minesota, 2007. |
[16] |
O. Levenspiel, "Chemical Reaction Engineering,'' 3nd edition, Wiley, New York, 1999. |
[17] |
R. Lovitt and J. Wimpenny, The gradostat: A bidirectional compound chemostat and its applications in microbial research, Journal of General Microbiology, 127 (1981), 261-268. |
[18] |
K. Luyben and J. Tramper, Optimal design for continuously stirred tank reactors in series using Michaelis-Menten kinetics, Biotechnology and Bioengineering, 24 (1982), 1217-1220. |
[19] |
R. MacArthur and E. Wilson, "The Theory of Island Biogeography,'' Princeton University Press, 1967. |
[20] |
K. Mischaikow, H. Smith and H. Thieme, Asymptotically autonomous semiflows: Chain recurrence and Lyapunov functions, Transactions of the American Mathematical Society, 347 (1995), 1669-1685.doi: 10.2307/2154964. |
[21] |
J. Monod, La technique de la culture continue: Théorie et applications, Annales de l'Institut Pasteur, 79 (1950), 390-410. |
[22] |
S. Nakaoka and Y. Takeuchi, Competition in chemostat-type equations with two habitats, Mathematical Bioscience, 201 (2006), 157-171. |
[23] |
M. Nelson and H. Sidhu, Evaluating the performance of a cascade of two bioreactors, Chemical Engineering Science, 61 (2006), 3159-3166. |
[24] |
A. Novick and L. Szilard, Description of the chemostat, Science, 112 (1950), 715-716. |
[25] |
A. Rapaport, J. Harmand and F. Mazenc, Coexistence in the design of a series of two chemostats, Nonlinear Analysis, Real World Applications, 9 (2008), 1052-1067. |
[26] |
E. Roca, C. Ghommidh, J.-M. Navarro and J.-M. Lema, Hydraulic model of a gas-lift bioreactor with flocculating yeast, Bioprocess and Biosystems Engineering, 12 (1995), 269-272. |
[27] |
G. Roux, B. Dahhou and I. Queinnec, Adaptive non-linear control of a continuous stirred tank bioreactor, Journal of Process Control, 4 (1994), 121-126. |
[28] |
A. Saddoud, T. Sari, A. Rapaport, R. Lortie, J. Harmand and E. Dubreucq, A mathematical study of an enzymatic hydrolysis of a cellulosic substrate in non homogeneous reactors, Proceedings of the IFAC Computer Applications in Biotechnology Conference (CAB 2010), Leuven, Belgium, July 7-9, 2010. |
[29] |
A. Scheel and E. Van Vleck, Lattice differential equations embedded into reaction-diffusion systems, Proceedings of the Royal Society Edinburgh Section A, 139 (2009), 193-207. |
[30] |
H. Smith and P. Waltman, "The Theory of Chemostat. Dynamics of Microbial Competition,'' Cambridge Studies in Mathematical Biology, 13, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511530043. |
[31] |
G. Stephanopoulos and A. Fredrickson, Effect of inhomogeneities on the coexistence of competing microbial populations, Biotechnology and Bioengineering, 21 (1979), 1491-1498. |
[32] |
R. Schwartz, A. Juo and K. McInnes, Estimating parameters for a dual-porosity model to describe non-equilibrium, reactive transport in a fine-textured soil, Journal of Hydrology, 229 (2000), 149-167. |
[33] |
C. Tsakiroglou and M. Ioannidis, Dual-porosity modelling of the pore structure and transport properties of a contaminated soil, European Journal of Soil Science, 59 (2008), 744-761. |
[34] |
F. Valdes-Parada, J. Alvarez-Ramirez and A. Ochoa-Tapia, An approximate solution for a transient two-phase stirred tank bioreactor with nonlinear kinetics, Biotechnology Progress, 21 (2005), 1420-1428. |
[35] |
K. Van't Riet and J. Tramper, "Basic Bioreactor Design,'' Marcel Dekker, New York, 1991. |