2012, 9(2): 413-430. doi: 10.3934/mbe.2012.9.413

The impact of school closures on pandemic influenza: Assessing potential repercussions using a seasonal SIR model

1. 

Department of Mathematics, Purdue University, West Lafayette, IN 47907, United States, United States, United States

2. 

Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, United States

Received  June 2011 Revised  November 2011 Published  March 2012

When a new pandemic influenza strain has been identified, mass-production of vaccines can take several months, and antiviral drugs are expensive and usually in short supply. Social distancing measures, such as school closures, thus seem an attractive means to mitigate disease spread. However, the transmission of influenza is seasonal in nature, and as has been noted in previous studies, a decrease in the average transmission rate in a seasonal disease model may result in a larger final size. In the studies presented here, we analyze a hypothetical pandemic using a SIR epidemic model with time- and age-dependent transmission rates; using this model we assess and quantify, for the first time, the the effect of the timing and length of widespread school closures on influenza pandemic final size and average peak time.
    We find that the effect on pandemic progression strongly depends on the timing of the start of the school closure. For instance, we determine that school closures during a late spring wave of an epidemic can cause a pandemic to become up to 20% larger, but have the advantage that the average time of the peak is shifted by up to two months, possibly allowing enough time for development of vaccines to mitigate the larger size of the epidemic. Our studies thus suggest that when heterogeneity in transmission is a significant factor, decisions of public health policy will be particularly important as to how control measures such as school closures should be implemented.
Citation: Sherry Towers, Katia Vogt Geisse, Chia-Chun Tsai, Qing Han, Zhilan Feng. The impact of school closures on pandemic influenza: Assessing potential repercussions using a seasonal SIR model. Mathematical Biosciences & Engineering, 2012, 9 (2) : 413-430. doi: 10.3934/mbe.2012.9.413
References:
[1]

W. J. Alonso, C. Viboud, L. Simonsen, E. W. Hirano, L. Z. Daufenbach and M. A. Miller, Seasonality of influenza in Brazil: A traveling wave from the Amazon to the Subtropics, Am. J. Epidemiol., 165 (2007), 1434-1442. doi: 10.1093/aje/kwm012.

[2]

R. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control," Oxford University Press, New York, 1991.

[3]

N. Bacaër and E. H. Ait Dads, Genealogy with seasonality, the basic reproduction number, and the influenza pandemic, J. Math. Biol., 62 (2011), 741-762.

[4]

N. Bacaër and M. G. M. Gomes, On the final size of epidemics with seasonality, Bulletin of Mathematical Biology, 71 (2009), 1954-1966. doi: 10.1007/s11538-009-9433-7.

[5]

N. Bacaër, Approximation of the basic reproduction number $R_0$ for vector-borne diseases with a periodic vector population, Bull. Math. Biol., 69 (2007), 1067-1091. doi: 10.1007/s11538-006-9166-9.

[6]

N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436. doi: 10.1007/s00285-006-0015-0.

[7]

S. Cauchemez, N. M. Ferguson, C. Wachtel, A. Tegnell, G. Saour, B. Duncan and A. Nicoll, Closure of schools during an influenza pandemic, Lancet. Infect. Dis., 9 (2009), 473-481. doi: 10.1016/S1473-3099(09)70176-8.

[8]

S. Cauchemez, A.-J. Valleron, P.-Y. Boëlle, A. Flahault and N. M. Ferguson, Estimating the impact of school closure on influenza transmission from Sentinel data, Nature, 452 (2008), 750-754. doi: 10.1038/nature06732.

[9]

V. Colizza, A. Barrat, M. Barthelemy, A.-J. Valleron and A. Vespignani, Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions, PLoS Med., 4 (2007), e13. doi: 10.1371/journal.pmed.0040013.

[10]

S. Y. Del Valle, P. D. Stroud and S. M. Mniszewski, Dynamic contact patterns and social structure, in "Realistic Social Networks in Social Networks: Development, Evaluation, and Influence," Nova Science Publishers, (2009), 201-216.

[11]

S. F. Dowell, Seasonal variation in host susceptibility and cycles of certain infectious diseases, Emerg. Infec. Dis., 7 (2001), 369-374.

[12]

J. Dushoff, J. B. Plotkin, C. Viboud, D. J. Earn and L. Simonsen, Mortality due to influenza in the United States, American Journal of Epidemiology, 163 (2006), 181-187.

[13]

Z. Feng, S. Towers and Y. Yang, Modeling the effects of vaccination and treatment on pandemic influenza, American Association of Pharmaceutical Science Journal, 13 (2011), 427-437.

[14]

N. M. Ferguson, D. A. T. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley and D. S. Burke, Strategies for mitigating an influenza pandemic, Nature, 442 (2006), 448-452. doi: 10.1038/nature04795.

[15]

N. M. Ferguson, A .P. Galvani and R. M. Bush, Ecological and immunological determinants of influenza evolution, Nature, 422 (2003), 428-433. doi: 10.1038/nature01509.

[16]

C. Fraser, et al., Pandemic potential of a strain of influenza A(H1N1): Early findings, Science, 324 (2009), 1557-1561. doi: 10.1126/science.1176062.

[17]

T. C. Germann, K. Kadau, I. M. Longini and C. A. Macken, Mitigation strategies for pandemic influenza in the United States, PNAS, 103 (2006), 5935-5940. doi: 10.1073/pnas.0601266103.

[18]

R. J. Glass, L. M. Glass, W. E. Beyeler and J. H. Min, Targeted social distancing design for pandemic influenza, Emerg. Infect. Dis., 12 (2006), 1671-1681. doi: 10.3201/eid1211.060255.

[19]

M. Z. Gojovic, B. Sander, D. Fisman, M. D. Krahn and C. T. Bauch, Modelling mitigation strategies for pandemic (H1N1) 2009, CMAJ, 181 (2009), 673-680. doi: 10.1503/cmaj.091641.

[20]

N. Halder, J. Kelso and G. Milne, Analysis of the effectiveness of interventions used during the 2009 A/H1N1 influenza pandemic, BMC Public Health, 10 (2010), 168. doi: 10.1186/1471-2458-10-168.

[21]

S. D. Holmberg, C. M. Layton, G. S. Ghneim and D. K. Wagener, State plans for containment of pandemic influenza, Emerg. Infect. Dis., 12 (2006), 1414-1417. doi: 10.3201/eid1209.060369.

[22]

L. Kahn, Pandemic influenza school closure policies, Emerg. Infect. Dis., 13 (2007), 344-345. doi: 10.3201/eid1302.061109.

[23]

J. K. Kelso, G. J. Milne and H. Kelly, Simulation suggests that rapid activation of social distancing can arrest epidemic development due to a novel strain of influenza, BMC Public Health, 9 (2009).

[24]

B. Y. Lee, S. T. Brown, P. Cooley, M. A. Potter, W. D. Wheaton, R. E. Voorhees, S. Stebbins, J. J. Grefenstette, S. M. Zimmer, R. K. Zimmerman, T. M. Assi, R. R. Bailey, D. K. Wagener and D. S. Burke, Simulating school closure strategies to mitigate an influenza epidemic, Journal of Public Health Management and Practice, 16 (2010), 252-261.

[25]

E. Lofgren, N.H . Fefferman, Y. N. Naumov, J. Gorski and E. N. Naumova, Influenza seasonality: Underlying causes and modeling theories, J. Virol., 81 (2007), 5429-5436. doi: 10.1128/JVI.01680-06.

[26]

A. C. Lowen, S. Mubareka, J. Steel and P. Palese, Influenza virus transmission is dependent on relative humidity and temperature, PLoS Pathogens, 4 (2007), 151-158. doi: 10.1371/journal.ppat.0030151.

[27]

J. Medlock and A. P. Galvani, Optimizing influenza vaccine distribution, Science, 325 (2009), 1705-1708. doi: 10.1126/science.1175570.

[28]

G. J. Milne, J. K. Kelso, H. A. Kelly, S. T. Huband and J. McVernon, A small community model for the transmission of infectious diseases: Comparison of school closure as an intervention in individual-based models of an influenza pandemic, PLoS ONE, 3 (2008), e4005. doi: 10.1371/journal.pone.0004005.

[29]

J. Mossong, N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikolajczyk, M. Massari, S. Salmaso, G. Scalia Tomba, J. Wallinga, J. Heijne, M. Sadkowska-Todys, M. Rosinska and W. J. Edmunds, Social contacts and mixing patterns relevant to the spread of infectious diseases, PLoS Med, 5 (2008), e74. doi: 10.1371/journal.pmed.0050074.

[30]

B. Sander, A. Nizam, L. P. Garrison, M. J. Postma, M. E. Halloran and I. M. Longini, Economic evaluation of influenza pandemic mitigation strategies in the United States using a stochastic microsimulation transmission model, Value in Health, 12 (2009), 226. doi: 10.1111/j.1524-4733.2008.00437.x.

[31]

S. Towers and Z. Feng, Pandemic H1N1 influenza: Predicting the course of pandemic and assessing the efficacy of the planned vaccination programme in the United States, Eurosurveillance, 14 (2009).

[32]

S. Towers, K. Vogt Geisse, Y. Zheng and Z. Feng, Antiviral treatment for pandemic influenza: Assessing potential repercussions using a seasonally forced SIR model, Journal of Theoretical Biology, 289 (2011), 259-268. doi: 10.1016/j.jtbi.2011.08.011.

[33]

, U.S. 2000 Census. Available from: http://www.census.gov.

[34]

W. Wang and X.-Q. Zhang, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Equat., 20 (2008), 699-717. doi: 10.1007/s10884-008-9111-8.

[35]

World Health Organization, Nonpharmaceutical interventions for pandemic influenza, national and community measures, Emerg. Infec. Dis., 12 (2006), 88-94.

[36]

Y. Yang, Jonathan D. Sugimoto, M. E. Halloran, N. E. Basta, D. L. Chao, L. Matrajt, G. Potter, E. Kenah and I. M. Longini Jr., The transmissibility and control of pandemic influenza A(H1N1) virus, Science, 326 (2009), 729-733. doi: 10.1126/science.1177373.

show all references

References:
[1]

W. J. Alonso, C. Viboud, L. Simonsen, E. W. Hirano, L. Z. Daufenbach and M. A. Miller, Seasonality of influenza in Brazil: A traveling wave from the Amazon to the Subtropics, Am. J. Epidemiol., 165 (2007), 1434-1442. doi: 10.1093/aje/kwm012.

[2]

R. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control," Oxford University Press, New York, 1991.

[3]

N. Bacaër and E. H. Ait Dads, Genealogy with seasonality, the basic reproduction number, and the influenza pandemic, J. Math. Biol., 62 (2011), 741-762.

[4]

N. Bacaër and M. G. M. Gomes, On the final size of epidemics with seasonality, Bulletin of Mathematical Biology, 71 (2009), 1954-1966. doi: 10.1007/s11538-009-9433-7.

[5]

N. Bacaër, Approximation of the basic reproduction number $R_0$ for vector-borne diseases with a periodic vector population, Bull. Math. Biol., 69 (2007), 1067-1091. doi: 10.1007/s11538-006-9166-9.

[6]

N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436. doi: 10.1007/s00285-006-0015-0.

[7]

S. Cauchemez, N. M. Ferguson, C. Wachtel, A. Tegnell, G. Saour, B. Duncan and A. Nicoll, Closure of schools during an influenza pandemic, Lancet. Infect. Dis., 9 (2009), 473-481. doi: 10.1016/S1473-3099(09)70176-8.

[8]

S. Cauchemez, A.-J. Valleron, P.-Y. Boëlle, A. Flahault and N. M. Ferguson, Estimating the impact of school closure on influenza transmission from Sentinel data, Nature, 452 (2008), 750-754. doi: 10.1038/nature06732.

[9]

V. Colizza, A. Barrat, M. Barthelemy, A.-J. Valleron and A. Vespignani, Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions, PLoS Med., 4 (2007), e13. doi: 10.1371/journal.pmed.0040013.

[10]

S. Y. Del Valle, P. D. Stroud and S. M. Mniszewski, Dynamic contact patterns and social structure, in "Realistic Social Networks in Social Networks: Development, Evaluation, and Influence," Nova Science Publishers, (2009), 201-216.

[11]

S. F. Dowell, Seasonal variation in host susceptibility and cycles of certain infectious diseases, Emerg. Infec. Dis., 7 (2001), 369-374.

[12]

J. Dushoff, J. B. Plotkin, C. Viboud, D. J. Earn and L. Simonsen, Mortality due to influenza in the United States, American Journal of Epidemiology, 163 (2006), 181-187.

[13]

Z. Feng, S. Towers and Y. Yang, Modeling the effects of vaccination and treatment on pandemic influenza, American Association of Pharmaceutical Science Journal, 13 (2011), 427-437.

[14]

N. M. Ferguson, D. A. T. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley and D. S. Burke, Strategies for mitigating an influenza pandemic, Nature, 442 (2006), 448-452. doi: 10.1038/nature04795.

[15]

N. M. Ferguson, A .P. Galvani and R. M. Bush, Ecological and immunological determinants of influenza evolution, Nature, 422 (2003), 428-433. doi: 10.1038/nature01509.

[16]

C. Fraser, et al., Pandemic potential of a strain of influenza A(H1N1): Early findings, Science, 324 (2009), 1557-1561. doi: 10.1126/science.1176062.

[17]

T. C. Germann, K. Kadau, I. M. Longini and C. A. Macken, Mitigation strategies for pandemic influenza in the United States, PNAS, 103 (2006), 5935-5940. doi: 10.1073/pnas.0601266103.

[18]

R. J. Glass, L. M. Glass, W. E. Beyeler and J. H. Min, Targeted social distancing design for pandemic influenza, Emerg. Infect. Dis., 12 (2006), 1671-1681. doi: 10.3201/eid1211.060255.

[19]

M. Z. Gojovic, B. Sander, D. Fisman, M. D. Krahn and C. T. Bauch, Modelling mitigation strategies for pandemic (H1N1) 2009, CMAJ, 181 (2009), 673-680. doi: 10.1503/cmaj.091641.

[20]

N. Halder, J. Kelso and G. Milne, Analysis of the effectiveness of interventions used during the 2009 A/H1N1 influenza pandemic, BMC Public Health, 10 (2010), 168. doi: 10.1186/1471-2458-10-168.

[21]

S. D. Holmberg, C. M. Layton, G. S. Ghneim and D. K. Wagener, State plans for containment of pandemic influenza, Emerg. Infect. Dis., 12 (2006), 1414-1417. doi: 10.3201/eid1209.060369.

[22]

L. Kahn, Pandemic influenza school closure policies, Emerg. Infect. Dis., 13 (2007), 344-345. doi: 10.3201/eid1302.061109.

[23]

J. K. Kelso, G. J. Milne and H. Kelly, Simulation suggests that rapid activation of social distancing can arrest epidemic development due to a novel strain of influenza, BMC Public Health, 9 (2009).

[24]

B. Y. Lee, S. T. Brown, P. Cooley, M. A. Potter, W. D. Wheaton, R. E. Voorhees, S. Stebbins, J. J. Grefenstette, S. M. Zimmer, R. K. Zimmerman, T. M. Assi, R. R. Bailey, D. K. Wagener and D. S. Burke, Simulating school closure strategies to mitigate an influenza epidemic, Journal of Public Health Management and Practice, 16 (2010), 252-261.

[25]

E. Lofgren, N.H . Fefferman, Y. N. Naumov, J. Gorski and E. N. Naumova, Influenza seasonality: Underlying causes and modeling theories, J. Virol., 81 (2007), 5429-5436. doi: 10.1128/JVI.01680-06.

[26]

A. C. Lowen, S. Mubareka, J. Steel and P. Palese, Influenza virus transmission is dependent on relative humidity and temperature, PLoS Pathogens, 4 (2007), 151-158. doi: 10.1371/journal.ppat.0030151.

[27]

J. Medlock and A. P. Galvani, Optimizing influenza vaccine distribution, Science, 325 (2009), 1705-1708. doi: 10.1126/science.1175570.

[28]

G. J. Milne, J. K. Kelso, H. A. Kelly, S. T. Huband and J. McVernon, A small community model for the transmission of infectious diseases: Comparison of school closure as an intervention in individual-based models of an influenza pandemic, PLoS ONE, 3 (2008), e4005. doi: 10.1371/journal.pone.0004005.

[29]

J. Mossong, N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikolajczyk, M. Massari, S. Salmaso, G. Scalia Tomba, J. Wallinga, J. Heijne, M. Sadkowska-Todys, M. Rosinska and W. J. Edmunds, Social contacts and mixing patterns relevant to the spread of infectious diseases, PLoS Med, 5 (2008), e74. doi: 10.1371/journal.pmed.0050074.

[30]

B. Sander, A. Nizam, L. P. Garrison, M. J. Postma, M. E. Halloran and I. M. Longini, Economic evaluation of influenza pandemic mitigation strategies in the United States using a stochastic microsimulation transmission model, Value in Health, 12 (2009), 226. doi: 10.1111/j.1524-4733.2008.00437.x.

[31]

S. Towers and Z. Feng, Pandemic H1N1 influenza: Predicting the course of pandemic and assessing the efficacy of the planned vaccination programme in the United States, Eurosurveillance, 14 (2009).

[32]

S. Towers, K. Vogt Geisse, Y. Zheng and Z. Feng, Antiviral treatment for pandemic influenza: Assessing potential repercussions using a seasonally forced SIR model, Journal of Theoretical Biology, 289 (2011), 259-268. doi: 10.1016/j.jtbi.2011.08.011.

[33]

, U.S. 2000 Census. Available from: http://www.census.gov.

[34]

W. Wang and X.-Q. Zhang, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Equat., 20 (2008), 699-717. doi: 10.1007/s10884-008-9111-8.

[35]

World Health Organization, Nonpharmaceutical interventions for pandemic influenza, national and community measures, Emerg. Infec. Dis., 12 (2006), 88-94.

[36]

Y. Yang, Jonathan D. Sugimoto, M. E. Halloran, N. E. Basta, D. L. Chao, L. Matrajt, G. Potter, E. Kenah and I. M. Longini Jr., The transmissibility and control of pandemic influenza A(H1N1) virus, Science, 326 (2009), 729-733. doi: 10.1126/science.1177373.

[1]

Mudassar Imran, Mohamed Ben-Romdhane, Ali R. Ansari, Helmi Temimi. Numerical study of an influenza epidemic dynamical model with diffusion. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2761-2787. doi: 10.3934/dcdss.2020168

[2]

Eunha Shim. Prioritization of delayed vaccination for pandemic influenza. Mathematical Biosciences & Engineering, 2011, 8 (1) : 95-112. doi: 10.3934/mbe.2011.8.95

[3]

Julien Arino, Chris Bauch, Fred Brauer, S. Michelle Driedger, Amy L. Greer, S.M. Moghadas, Nick J. Pizzi, Beate Sander, Ashleigh Tuite, P. van den Driessche, James Watmough, Jianhong Wu, Ping Yan. Pandemic influenza: Modelling and public health perspectives. Mathematical Biosciences & Engineering, 2011, 8 (1) : 1-20. doi: 10.3934/mbe.2011.8.1

[4]

Rodolfo Acuňa-Soto, Luis Castaňeda-Davila, Gerardo Chowell. A perspective on the 2009 A/H1N1 influenza pandemic in Mexico. Mathematical Biosciences & Engineering, 2011, 8 (1) : 223-238. doi: 10.3934/mbe.2011.8.223

[5]

Diána H. Knipl, Gergely Röst. Modelling the strategies for age specific vaccination scheduling during influenza pandemic outbreaks. Mathematical Biosciences & Engineering, 2011, 8 (1) : 123-139. doi: 10.3934/mbe.2011.8.123

[6]

Majid Jaberi-Douraki, Seyed M. Moghadas. Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1045-1063. doi: 10.3934/mbe.2014.11.1045

[7]

Xinxin Tan, Shujuan Li, Sisi Liu, Zhiwei Zhao, Lisa Huang, Jiatai Gang. Dynamic simulation of a SEIQR-V epidemic model based on cellular automata. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 327-337. doi: 10.3934/naco.2015.5.327

[8]

Raimund Bürger, Gerardo Chowell, Pep Mulet, Luis M. Villada. Modelling the spatial-temporal progression of the 2009 A/H1N1 influenza pandemic in Chile. Mathematical Biosciences & Engineering, 2016, 13 (1) : 43-65. doi: 10.3934/mbe.2016.13.43

[9]

Olivia Prosper, Omar Saucedo, Doria Thompson, Griselle Torres-Garcia, Xiaohong Wang, Carlos Castillo-Chavez. Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza. Mathematical Biosciences & Engineering, 2011, 8 (1) : 141-170. doi: 10.3934/mbe.2011.8.141

[10]

P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1

[11]

Karen R. Ríos-Soto, Baojun Song, Carlos Castillo-Chavez. Epidemic spread of influenza viruses: The impact of transient populations on disease dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 199-222. doi: 10.3934/mbe.2011.8.199

[12]

Pierre Magal, Ahmed Noussair, Glenn Webb, Yixiang Wu. Modeling epidemic outbreaks in geographical regions: Seasonal influenza in Puerto Rico. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3535-3550. doi: 10.3934/dcdss.2020237

[13]

Hongyong Zhao, Peng Wu, Shigui Ruan. Dynamic analysis and optimal control of a three-age-class HIV/AIDS epidemic model in China. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3491-3521. doi: 10.3934/dcdsb.2020070

[14]

Riane Hajjami, Mustapha El Jarroudi, Aadil Lahrouz, Adel Settati, Mohamed EL Fatini, Kai Wang. Dynamic analysis of an $ SEIR $ epidemic model with a time lag in awareness allocated funds. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4191-4225. doi: 10.3934/dcdsb.2020285

[15]

Tailei Zhang, Zhimin Li. Analysis of COVID-19 epidemic transmission trend based on a time-delayed dynamic model. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021088

[16]

Tao Zheng, Yantao Luo, Xinran Zhou, Long Zhang, Zhidong Teng. Spatial dynamic analysis for COVID-19 epidemic model with diffusion and Beddington-DeAngelis type incidence. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021154

[17]

Kazuyuki Yagasaki. Optimal control of the SIR epidemic model based on dynamical systems theory. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2501-2513. doi: 10.3934/dcdsb.2021144

[18]

Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020

[19]

Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2121-2134. doi: 10.3934/dcdss.2020181

[20]

Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (3)

[Back to Top]