• Previous Article
    Analysis of a model for the effects of an external toxin on anaerobic digestion
  • MBE Home
  • This Issue
  • Next Article
    The impact of school closures on pandemic influenza: Assessing potential repercussions using a seasonal SIR model
2012, 9(2): 431-444. doi: 10.3934/mbe.2012.9.431

A mutualism-parasitism system modeling host and parasite with mutualism at low density

1. 

School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou 510275, China

2. 

US Geological Survey/Biological Resources Division and Department of Biology, University of Miami, Coral Gables, FL 33124, United States

Received  June 2011 Revised  October 2011 Published  March 2012

A mutualism-parasitism system of two species is considered, where mutualism is the dominant interaction when the predators (parasites) are at low density while parasitism is dominant when the predators are at high density. Our aim is to show that mutualism at low density promotes coexistence of the species and leads to high production of the prey (host). The mutualism-parasitism system presented here is a combination of the Lotka-Volterra cooperative model and Lotka-Volterra predator-prey model. By comparing dynamics of this system with those of the Lotka-Volterra predator-prey model, we present the mechanisms by which the mutualism improves the coexistence of the species and production of the prey. Then the parameter space is divided into six regions, which correspond to the four outcomes of mutualism, commensalism, predation/parasitism and neutralism, respectively. When the parameters are varied continuously among the six regions, it is shown that the interaction outcomes of the system transition smoothly among the four outcomes. By comparing the dynamics of the specific system with those of the Lotka-Volterra cooperative model, we show that the parasitism at high density promotes stability of the system. A novel aspect of this paper is the simplicity of the model, which allows rigorous and thorough analysis and transparency of the results.
Citation: Yuanshi Wang, Donald L. DeAngelis. A mutualism-parasitism system modeling host and parasite with mutualism at low density. Mathematical Biosciences & Engineering, 2012, 9 (2) : 431-444. doi: 10.3934/mbe.2012.9.431
References:
[1]

A. J. Belsky, Does herbivory benefit plants? A review of the evidence, American Naturalist, 127 (1986), 870-892. doi: 10.1086/284531.

[2]

R. S. Cantrell, C. Cosner and S. Ruan, Intraspecific interference and consumer-resource dynamics, Discrete and Continuous Dynamical Systems Ser. B, 4 (2004), 527-546. doi: 10.3934/dcdsb.2004.4.527.

[3]

M. I. Dyer, M. L. Turner and T. R. Seastedt, Herbivory and its consequences, Ecological Applications, 3 (1993), 10-16. doi: 10.2307/1941781.

[4]

A. J. Lotka, "Elements of Physiological Biology," Dover Publications, New York, 1956.

[5]

J. Herrera, Acorn predation and seedling production in a low-density population of cork oak (Quercus suber L.), Forest Ecology and Management, 76 (1995), 197-201. doi: 10.1016/0378-1127(95)03566-S.

[6]

D. W. Hilbert, D. M. Smith, J. K. Detling and M. I. Dyer, Relative growth rates and the grazing optimization hypothesis, Oecologia, 51 (1981), 14-18. doi: 10.1007/BF00344645.

[7]

J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics," Cambridge University Press, Cambridge, 1998.

[8]

J. N. Holland and D. L. DeAngelis, Consumer-resource theory predicts dynamic transitions between outcomes of interspecific interactions, Ecological Letters, 12 (2009), 1357-1366.

[9]

J. N. Holland and D. L. DeAngelis, A consumer-resource approach to the density-dependent population dynamics of mutualism, Ecology, 5 (2010), 1286-1295. doi: 10.1890/09-1163.1.

[10]

K. Kielland, J. P. Bryant and R. W. Ruess, Moose herbivory and carbon turnover of early successional stands in interior Alaska, Oikos, 80 (1997), 25-30. doi: 10.2307/3546512.

[11]

Y. Li, Z. L. Feng, R. Swihart, J. P. Bryant and N. Huntly, Modeling the impact of plant toxicity on plant-herbivore dynamics, Journal of Dynamics and Differential Equations, 18 (2006), 1021-1024. doi: 10.1007/s10884-006-9029-y.

[12]

R. M. May, "Stability and Complexity in Model Ecosystems," Princeton University Press, Princeton, 1974.

[13]

S. J. McNaughton, Serengeti migratory wildebeest: Facilitation of energy flow by grazing, Science, 191 (1976), 92-94. doi: 10.1126/science.191.4222.92.

[14]

S. J. McNaughton, Grazing as an optimization process: Grass-ungulate relationships in the Serengeti, American Naturalist, 113 (1979), 691-703. doi: 10.1086/283426.

[15]

M. Miyaki and K. Kikuzawa, Dispersal of Quercus mongolica acorns in a broad-leaved deciduous forest. 2. Scatterhoarding by mice, Forest Ecology and Management, 25 (1988), 9-16. doi: 10.1016/0378-1127(88)90130-2.

[16]

E. M. Molvar and R. T. Bowyer, Costs and benefits of group living in a recently social ungulate: The Alaskan moose, Journal of Mammalogy, 75 (1994), 621-630. doi: 10.2307/1382509.

[17]

J. D. Murray, "Mathematical Biology," Second edition, Biomathematics, 19, Springer-Verlag, Berlin, 1993.

[18]

C. Neuhauser and J. Fargione, A mutualism-parasitism continuum model and its application to plant-mycorrhizae interactions, Ecological Modelling, 177 (2004), 337-352. doi: 10.1016/j.ecolmodel.2004.02.010.

[19]

I. M. Pérez-Ramos and T. Maran, Factors affecting post-dispersal seed predation in two coexisting oak species: Microhabitat, burial and exclusion of large herbivores, Forest Ecology and Management, 255 (2008), 3506-3514. doi: 10.1016/j.foreco.2008.02.032.

[20]

Y. Wang, H. Wu and S. Ruan, Periodic orbits near heteroclinic cycles in a cyclic replicator system, J. Math. Biol., in press. doi: 10.1007/s00285-011-0435-3.

[21]

Y. Wang, D. L. DeAngelis and J. N. Holland, Uni-directional consumer-resource theory characterizing transitions of interaction outcomes, Ecological Complexity, 8 (2011), 249-257. doi: 10.1016/j.ecocom.2011.04.002.

[22]

Y. Wang and D. L. DeAngelis, Transitions of interaction outcomes in a uni-directional consumer-resource system, J. Theoretical Biology, 280 (2011), 43-49. doi: 10.1016/j.jtbi.2011.03.038.

[23]

Y. Wang and H. Wu, A mutualism-competition model characterizing competitors with mutualism at low density, Mathematical and Computer Modeling, 53 (2011), 1654-1663. doi: 10.1016/j.mcm.2010.12.033.

[24]

K. M. Stewart, R. T. Bowyer, R. W. Ruess, B. L. Dick and J. G. Kie, Herbivore optimization by North American elk: Consequences for theory and management, Wildlife Monographs, 167 (2006), 1-24.

[25]

V. Volterra, Fluctuation in the abundance of a species considered mathematically, Nature, 118 (1926), 558-560. doi: 10.1038/118558a0.

show all references

References:
[1]

A. J. Belsky, Does herbivory benefit plants? A review of the evidence, American Naturalist, 127 (1986), 870-892. doi: 10.1086/284531.

[2]

R. S. Cantrell, C. Cosner and S. Ruan, Intraspecific interference and consumer-resource dynamics, Discrete and Continuous Dynamical Systems Ser. B, 4 (2004), 527-546. doi: 10.3934/dcdsb.2004.4.527.

[3]

M. I. Dyer, M. L. Turner and T. R. Seastedt, Herbivory and its consequences, Ecological Applications, 3 (1993), 10-16. doi: 10.2307/1941781.

[4]

A. J. Lotka, "Elements of Physiological Biology," Dover Publications, New York, 1956.

[5]

J. Herrera, Acorn predation and seedling production in a low-density population of cork oak (Quercus suber L.), Forest Ecology and Management, 76 (1995), 197-201. doi: 10.1016/0378-1127(95)03566-S.

[6]

D. W. Hilbert, D. M. Smith, J. K. Detling and M. I. Dyer, Relative growth rates and the grazing optimization hypothesis, Oecologia, 51 (1981), 14-18. doi: 10.1007/BF00344645.

[7]

J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics," Cambridge University Press, Cambridge, 1998.

[8]

J. N. Holland and D. L. DeAngelis, Consumer-resource theory predicts dynamic transitions between outcomes of interspecific interactions, Ecological Letters, 12 (2009), 1357-1366.

[9]

J. N. Holland and D. L. DeAngelis, A consumer-resource approach to the density-dependent population dynamics of mutualism, Ecology, 5 (2010), 1286-1295. doi: 10.1890/09-1163.1.

[10]

K. Kielland, J. P. Bryant and R. W. Ruess, Moose herbivory and carbon turnover of early successional stands in interior Alaska, Oikos, 80 (1997), 25-30. doi: 10.2307/3546512.

[11]

Y. Li, Z. L. Feng, R. Swihart, J. P. Bryant and N. Huntly, Modeling the impact of plant toxicity on plant-herbivore dynamics, Journal of Dynamics and Differential Equations, 18 (2006), 1021-1024. doi: 10.1007/s10884-006-9029-y.

[12]

R. M. May, "Stability and Complexity in Model Ecosystems," Princeton University Press, Princeton, 1974.

[13]

S. J. McNaughton, Serengeti migratory wildebeest: Facilitation of energy flow by grazing, Science, 191 (1976), 92-94. doi: 10.1126/science.191.4222.92.

[14]

S. J. McNaughton, Grazing as an optimization process: Grass-ungulate relationships in the Serengeti, American Naturalist, 113 (1979), 691-703. doi: 10.1086/283426.

[15]

M. Miyaki and K. Kikuzawa, Dispersal of Quercus mongolica acorns in a broad-leaved deciduous forest. 2. Scatterhoarding by mice, Forest Ecology and Management, 25 (1988), 9-16. doi: 10.1016/0378-1127(88)90130-2.

[16]

E. M. Molvar and R. T. Bowyer, Costs and benefits of group living in a recently social ungulate: The Alaskan moose, Journal of Mammalogy, 75 (1994), 621-630. doi: 10.2307/1382509.

[17]

J. D. Murray, "Mathematical Biology," Second edition, Biomathematics, 19, Springer-Verlag, Berlin, 1993.

[18]

C. Neuhauser and J. Fargione, A mutualism-parasitism continuum model and its application to plant-mycorrhizae interactions, Ecological Modelling, 177 (2004), 337-352. doi: 10.1016/j.ecolmodel.2004.02.010.

[19]

I. M. Pérez-Ramos and T. Maran, Factors affecting post-dispersal seed predation in two coexisting oak species: Microhabitat, burial and exclusion of large herbivores, Forest Ecology and Management, 255 (2008), 3506-3514. doi: 10.1016/j.foreco.2008.02.032.

[20]

Y. Wang, H. Wu and S. Ruan, Periodic orbits near heteroclinic cycles in a cyclic replicator system, J. Math. Biol., in press. doi: 10.1007/s00285-011-0435-3.

[21]

Y. Wang, D. L. DeAngelis and J. N. Holland, Uni-directional consumer-resource theory characterizing transitions of interaction outcomes, Ecological Complexity, 8 (2011), 249-257. doi: 10.1016/j.ecocom.2011.04.002.

[22]

Y. Wang and D. L. DeAngelis, Transitions of interaction outcomes in a uni-directional consumer-resource system, J. Theoretical Biology, 280 (2011), 43-49. doi: 10.1016/j.jtbi.2011.03.038.

[23]

Y. Wang and H. Wu, A mutualism-competition model characterizing competitors with mutualism at low density, Mathematical and Computer Modeling, 53 (2011), 1654-1663. doi: 10.1016/j.mcm.2010.12.033.

[24]

K. M. Stewart, R. T. Bowyer, R. W. Ruess, B. L. Dick and J. G. Kie, Herbivore optimization by North American elk: Consequences for theory and management, Wildlife Monographs, 167 (2006), 1-24.

[25]

V. Volterra, Fluctuation in the abundance of a species considered mathematically, Nature, 118 (1926), 558-560. doi: 10.1038/118558a0.

[1]

Meng Liu, Ke Wang. Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2495-2522. doi: 10.3934/dcds.2013.33.2495

[2]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6185-6205. doi: 10.3934/dcdsb.2021013

[3]

Ting-Hui Yang, Weinian Zhang, Kaijen Cheng. Global dynamics of three species omnivory models with Lotka-Volterra interaction. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2867-2881. doi: 10.3934/dcdsb.2016077

[4]

Yueding Yuan, Yang Wang, Xingfu Zou. Spatial dynamics of a Lotka-Volterra model with a shifting habitat. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5633-5671. doi: 10.3934/dcdsb.2019076

[5]

Juan Luis García Guirao, Marek Lampart. Transitivity of a Lotka-Volterra map. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 75-82. doi: 10.3934/dcdsb.2008.9.75

[6]

Xiaoyue Li, Xuerong Mao. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 523-545. doi: 10.3934/dcds.2009.24.523

[7]

Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059

[8]

Qi Wang. Some global dynamics of a Lotka-Volterra competition-diffusion-advection system. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3245-3255. doi: 10.3934/cpaa.2020142

[9]

Qian Guo, Xiaoqing He, Wei-Ming Ni. Global dynamics of a general Lotka-Volterra competition-diffusion system in heterogeneous environments. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6547-6573. doi: 10.3934/dcds.2020290

[10]

Minzhen Xu, Shangjiang Guo. Dynamics of a delayed Lotka-Volterra model with two predators competing for one prey. Discrete and Continuous Dynamical Systems - B, 2022, 27 (10) : 5573-5595. doi: 10.3934/dcdsb.2021287

[11]

Xiao He, Sining Zheng. Protection zone in a modified Lotka-Volterra model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2027-2038. doi: 10.3934/dcdsb.2015.20.2027

[12]

Georg Hetzer, Tung Nguyen, Wenxian Shen. Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1699-1722. doi: 10.3934/cpaa.2012.11.1699

[13]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[14]

Shaohua Chen, Runzhang Xu, Hongtao Yang. Global and blowup solutions for general Lotka-Volterra systems. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1757-1768. doi: 10.3934/cpaa.2016012

[15]

Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650

[16]

Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195

[17]

Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953

[18]

Linping Peng, Zhaosheng Feng, Changjian Liu. Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4807-4826. doi: 10.3934/dcds.2014.34.4807

[19]

Suqing Lin, Zhengyi Lu. Permanence for two-species Lotka-Volterra systems with delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 137-144. doi: 10.3934/mbe.2006.3.137

[20]

Bang-Sheng Han, Zhi-Cheng Wang, Zengji Du. Traveling waves for nonlocal Lotka-Volterra competition systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1959-1983. doi: 10.3934/dcdsb.2020011

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (77)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]