• Previous Article
    Parameter estimation and uncertainty quantification for an epidemic model
  • MBE Home
  • This Issue
  • Next Article
    Fast two dimensional to three dimensional registration of fluoroscopy and CT-scans using Octrees on segmentation maps
2012, 9(3): 539-552. doi: 10.3934/mbe.2012.9.539

Impact of vaccine arrival on the optimal control of a newly emerging infectious disease: A theoretical study

1. 

Department of Mathematics and Applications, University of Naples Federico II, via Cintia, I-80126 Naples, Italy

Received  April 2011 Revised  March 2012 Published  July 2012

When a newly emerging human infectious disease spreads through a host population, it may be that public health authorities must begin facing the outbreaks and planning an intervention campaign when not all intervention tools are readily available. In such cases, the problem of finding optimal intervention strategies to minimize both the disease burden and the intervention costs may be addressed by considering multiple intervention regimes. In this paper, we consider the scenario in which authorities may rely initially only on non-pharmaceutical interventions at the beginning of the campaign, knowing that a vaccine will later be available, at an exogenous and known switching time. We use a two-stage optimal control problem over a finite time horizon to analyze the optimal intervention strategies during the whole campaign, and to assess the effects of the new intervention tool on the preceding stage of the campaign. We obtain the optimality systems of two connected optimal control problems, and show the solution profiles through numerical simulations.
Citation: Bruno Buonomo, Eleonora Messina. Impact of vaccine arrival on the optimal control of a newly emerging infectious disease: A theoretical study. Mathematical Biosciences & Engineering, 2012, 9 (3) : 539-552. doi: 10.3934/mbe.2012.9.539
References:
[1]

S. Anita, V. Arnăutu and V. Capasso, "An Introduction to Optimal Control Problems in Life Sciences and Economics," Modeling and Simulation in Science, Engineering and Technology, Birkhäuser/Springer, New York, 2011.

[2]

E. Asano, L. J. Gross, S. Lenhart and L. A. Real, Optimal control of vaccine distribution in a rabies metapopulation model, Math. Biosci. Engineering, 5 (2008), 219-238.

[3]

H. Behncke, Optimal control of deterministic epidemics, Optimal Control Appl. Methods, 21 (2000), 269-285. doi: 10.1002/oca.678.

[4]

K. W. Blayneh, A. B. Gumel, S. Lenhart and T. Clayton, Backward bifurcation and optimal control in transmission dynamics of West Nile Virus, Bull. Math. Biol., 72 (2010), 1006-1028. doi: 10.1007/s11538-009-9480-0.

[5]

R. Boucekkine, J. B. Krawczyk and T. Vall\'ee, Environmental quality versus economic performance: A dynamic game approach, Optimal Control Appl. Methods, 32 (2011), 29-46. doi: 10.1002/oca.927.

[6]

R. Boucekkine, C. Saglam and T. Vall\'ee, Technology adoption under embodiment: A two-stage optimal control approach, Macroeconomic Dynamics, 8 (2004), 250-271.

[7]

R. Bulirsch, E. Nerz, H. J. Pesch and O. von Stryk, Combining direct and indirect methods in optimal control: Range maximization of a hang glider, in "Optimal Control" (Freiburg, 1991), Internat. Ser. Numer. Math., 111, Birkh\"auser, Basel, (1993), 273-288.

[8]

B. Buonomo, A simple analysis of vaccination strategies for rubella, Math. Biosci. Engineering, 8 (2011), 677-687.

[9]

B. Buonomo, On the optimal vaccination strategies for horizontally and vertically transmitted infectious diseases, J. Biol. Sys., 19 (2011), 263-279. doi: 10.1142/S0218339011003853.

[10]

C. W. Clark, "Mathematical Bioeconomics: The Optimal Management of Renewable Resources," Third edition, Pure and Applied Mathematics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 2010.

[11]

A. d'Onofrio and P. Manfredi, Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious disease, J. Theor. Biol., 256 (2009), 473-478. doi: 10.1016/j.jtbi.2008.10.005.

[12]

Z. Feng, Y. Yang, D. Xu, P. Zhang, M. M. Mc Cauley and J. W. Glasser, Timely identification of optimal control strategies for emerging infectious diseases, J. Theor. Biol., 259 (2009), 165-171. doi: 10.1016/j.jtbi.2009.03.006.

[13]

K. R. Fister, S. Lenhart and J. S. McNally, Optimizing chemotherapy in an HIV model, Electron. J. Differential Equations, 1998, 12 pp.

[14]

K. R. Fister and J. C. Panetta, Optimal control applied to cell-cycle-specific cancer chemotherapy, SIAM J. Appl. Math., 60 (2000), 1059-1072. doi: 10.1137/S0036139998338509.

[15]

K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies, SIAM J. Appl. Math., 63 (2003), 1954-1971. doi: 10.1137/S0036139902413489.

[16]

W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control," Applications of Mathematics, No. 1, Springer-Verlag, Berlin-New York, 1975.

[17]

H. Gaff and E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models, Math. Biosci. Engineering, 6 (2009), 469-492.

[18]

D. Grass, J. P. Caulkins, G. Feichtinger, G. Tragler and D. A. Behrens, "Optimal Control of Nonlinear Processes. With Applications in Drugs, Corruption, and Terror," Springer-Verlag, Berlin, 2008.

[19]

A. Huhtala, A post-consumer waste management model for determining optimal levels of recycling and landfilling, Environ. Resour. Econom., 10 (1997), 301-314. doi: 10.1023/A:1026475208718.

[20]

Italian Ministry of Health, "Nuova Influenza." Available from: http://www.nuovainfluenza.salute.gov.it/nuovainfluenza/nuovaInfluenza.jsp.

[21]

Italian Ministry of Health, "FluNews," no. 28, May 3-9, 2010 (18th week). Available from: http://www.nuovainfluenza.salute.gov.it/imgs/C_17_notiziario_63_allegato.pdf.

[22]

H. R. Joshi, Optimal control of an HIV immunology model, Optimal Control Appl. Methods, 23 (2002), 199-213. doi: 10.1002/oca.710.

[23]

E. Jung, S. Iwami, Y. Takeuchi and T.-C. Jo, Optimal control strategy for prevention of avian influenza pandemic, J. Theor. Biol., 260 (2009), 220-229. doi: 10.1016/j.jtbi.2009.05.031.

[24]

E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), 473-482.

[25]

S. Lee, G. Chowell and C. Castillo-Chavez, Optimal control for pandemic influenza: The role of limited antiviraltreatment and isolation, J. Theor. Biol., 265 (2010), 136-150. doi: 10.1016/j.jtbi.2010.04.003.

[26]

S. Lee, R. Morales and C. Castillo-Chavez, A note on the use of influenza vaccination strategies when supply is limited, Math. Biosci. Engineering, 8 (2011), 171-182.

[27]

S. Lenhart and J. T. Workman, "Optimal Control Applied to Biological Models," Chapman & Hall/CRC Mathematical and Computational Biology Series, Chapman & Hall/CRC, Boca Raton, FL, 2007.

[28]

F. Lin, K. Muthuraman and M. Lawley, An optimal control theory approach to non-pharmaceutical interventions, BMC Infect. Dis., 10 (2010), 32-45. doi: 10.1186/1471-2334-10-32.

[29]

, MATLAB© , "Matlab Release 12,", The Mathworks Inc., (2000). 

[30]

R. L. Miller Neilan, E. Schaefer, H. Gaff, K. R. Fister and S. Lenhart, Modeling optimal intervention strategies for cholera, Bull. Math. Biol., 72 (2010), 2004-2018. doi: 10.1007/s11538-010-9521-8.

[31]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes," Interscience Publishers John Wiley & Sons, Inc. New York-London, 1962.

[32]

O. Prosper, O. Saucedo, D. Thompson, G. Torres-Garcia, X. Wang and C. Castillo-Chavez, Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza, Math. Biosci. Engineering, 8 (2011), 141-170.

[33]

R. J. Rossana, Delivery lags and buffer stocks in the theory of investment by the firm, J. Econ. Dyn. Control, 9 (1985), 135-193.

[34]

W. H. Schmidt, Numerical methods for optimal control problems with ODE or integral equations, in "Large-Scale Scientific Computing," Lecture Notes in Comput. Sci., 3743, Springer, Berlin, 2006, 255-262.

[35]

K. Tomiyama, Two-stage optimal control problems and optimality conditions, J. Econ. Dyn. Control, 9 (1985), 317-337.

show all references

References:
[1]

S. Anita, V. Arnăutu and V. Capasso, "An Introduction to Optimal Control Problems in Life Sciences and Economics," Modeling and Simulation in Science, Engineering and Technology, Birkhäuser/Springer, New York, 2011.

[2]

E. Asano, L. J. Gross, S. Lenhart and L. A. Real, Optimal control of vaccine distribution in a rabies metapopulation model, Math. Biosci. Engineering, 5 (2008), 219-238.

[3]

H. Behncke, Optimal control of deterministic epidemics, Optimal Control Appl. Methods, 21 (2000), 269-285. doi: 10.1002/oca.678.

[4]

K. W. Blayneh, A. B. Gumel, S. Lenhart and T. Clayton, Backward bifurcation and optimal control in transmission dynamics of West Nile Virus, Bull. Math. Biol., 72 (2010), 1006-1028. doi: 10.1007/s11538-009-9480-0.

[5]

R. Boucekkine, J. B. Krawczyk and T. Vall\'ee, Environmental quality versus economic performance: A dynamic game approach, Optimal Control Appl. Methods, 32 (2011), 29-46. doi: 10.1002/oca.927.

[6]

R. Boucekkine, C. Saglam and T. Vall\'ee, Technology adoption under embodiment: A two-stage optimal control approach, Macroeconomic Dynamics, 8 (2004), 250-271.

[7]

R. Bulirsch, E. Nerz, H. J. Pesch and O. von Stryk, Combining direct and indirect methods in optimal control: Range maximization of a hang glider, in "Optimal Control" (Freiburg, 1991), Internat. Ser. Numer. Math., 111, Birkh\"auser, Basel, (1993), 273-288.

[8]

B. Buonomo, A simple analysis of vaccination strategies for rubella, Math. Biosci. Engineering, 8 (2011), 677-687.

[9]

B. Buonomo, On the optimal vaccination strategies for horizontally and vertically transmitted infectious diseases, J. Biol. Sys., 19 (2011), 263-279. doi: 10.1142/S0218339011003853.

[10]

C. W. Clark, "Mathematical Bioeconomics: The Optimal Management of Renewable Resources," Third edition, Pure and Applied Mathematics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 2010.

[11]

A. d'Onofrio and P. Manfredi, Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious disease, J. Theor. Biol., 256 (2009), 473-478. doi: 10.1016/j.jtbi.2008.10.005.

[12]

Z. Feng, Y. Yang, D. Xu, P. Zhang, M. M. Mc Cauley and J. W. Glasser, Timely identification of optimal control strategies for emerging infectious diseases, J. Theor. Biol., 259 (2009), 165-171. doi: 10.1016/j.jtbi.2009.03.006.

[13]

K. R. Fister, S. Lenhart and J. S. McNally, Optimizing chemotherapy in an HIV model, Electron. J. Differential Equations, 1998, 12 pp.

[14]

K. R. Fister and J. C. Panetta, Optimal control applied to cell-cycle-specific cancer chemotherapy, SIAM J. Appl. Math., 60 (2000), 1059-1072. doi: 10.1137/S0036139998338509.

[15]

K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies, SIAM J. Appl. Math., 63 (2003), 1954-1971. doi: 10.1137/S0036139902413489.

[16]

W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control," Applications of Mathematics, No. 1, Springer-Verlag, Berlin-New York, 1975.

[17]

H. Gaff and E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models, Math. Biosci. Engineering, 6 (2009), 469-492.

[18]

D. Grass, J. P. Caulkins, G. Feichtinger, G. Tragler and D. A. Behrens, "Optimal Control of Nonlinear Processes. With Applications in Drugs, Corruption, and Terror," Springer-Verlag, Berlin, 2008.

[19]

A. Huhtala, A post-consumer waste management model for determining optimal levels of recycling and landfilling, Environ. Resour. Econom., 10 (1997), 301-314. doi: 10.1023/A:1026475208718.

[20]

Italian Ministry of Health, "Nuova Influenza." Available from: http://www.nuovainfluenza.salute.gov.it/nuovainfluenza/nuovaInfluenza.jsp.

[21]

Italian Ministry of Health, "FluNews," no. 28, May 3-9, 2010 (18th week). Available from: http://www.nuovainfluenza.salute.gov.it/imgs/C_17_notiziario_63_allegato.pdf.

[22]

H. R. Joshi, Optimal control of an HIV immunology model, Optimal Control Appl. Methods, 23 (2002), 199-213. doi: 10.1002/oca.710.

[23]

E. Jung, S. Iwami, Y. Takeuchi and T.-C. Jo, Optimal control strategy for prevention of avian influenza pandemic, J. Theor. Biol., 260 (2009), 220-229. doi: 10.1016/j.jtbi.2009.05.031.

[24]

E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), 473-482.

[25]

S. Lee, G. Chowell and C. Castillo-Chavez, Optimal control for pandemic influenza: The role of limited antiviraltreatment and isolation, J. Theor. Biol., 265 (2010), 136-150. doi: 10.1016/j.jtbi.2010.04.003.

[26]

S. Lee, R. Morales and C. Castillo-Chavez, A note on the use of influenza vaccination strategies when supply is limited, Math. Biosci. Engineering, 8 (2011), 171-182.

[27]

S. Lenhart and J. T. Workman, "Optimal Control Applied to Biological Models," Chapman & Hall/CRC Mathematical and Computational Biology Series, Chapman & Hall/CRC, Boca Raton, FL, 2007.

[28]

F. Lin, K. Muthuraman and M. Lawley, An optimal control theory approach to non-pharmaceutical interventions, BMC Infect. Dis., 10 (2010), 32-45. doi: 10.1186/1471-2334-10-32.

[29]

, MATLAB© , "Matlab Release 12,", The Mathworks Inc., (2000). 

[30]

R. L. Miller Neilan, E. Schaefer, H. Gaff, K. R. Fister and S. Lenhart, Modeling optimal intervention strategies for cholera, Bull. Math. Biol., 72 (2010), 2004-2018. doi: 10.1007/s11538-010-9521-8.

[31]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes," Interscience Publishers John Wiley & Sons, Inc. New York-London, 1962.

[32]

O. Prosper, O. Saucedo, D. Thompson, G. Torres-Garcia, X. Wang and C. Castillo-Chavez, Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza, Math. Biosci. Engineering, 8 (2011), 141-170.

[33]

R. J. Rossana, Delivery lags and buffer stocks in the theory of investment by the firm, J. Econ. Dyn. Control, 9 (1985), 135-193.

[34]

W. H. Schmidt, Numerical methods for optimal control problems with ODE or integral equations, in "Large-Scale Scientific Computing," Lecture Notes in Comput. Sci., 3743, Springer, Berlin, 2006, 255-262.

[35]

K. Tomiyama, Two-stage optimal control problems and optimality conditions, J. Econ. Dyn. Control, 9 (1985), 317-337.

[1]

Joaquim P. Mateus, Paulo Rebelo, Silvério Rosa, César M. Silva, Delfim F. M. Torres. Optimal control of non-autonomous SEIRS models with vaccination and treatment. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1179-1199. doi: 10.3934/dcdss.2018067

[2]

Zi Sang, Zhipeng Qiu, Xiefei Yan, Yun Zou. Assessing the effect of non-pharmaceutical interventions on containing an emerging disease. Mathematical Biosciences & Engineering, 2012, 9 (1) : 147-164. doi: 10.3934/mbe.2012.9.147

[3]

Majid Jaberi-Douraki, Seyed M. Moghadas. Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1045-1063. doi: 10.3934/mbe.2014.11.1045

[4]

Maria do Rosário de Pinho, Helmut Maurer, Hasnaa Zidani. Optimal control of normalized SIMR models with vaccination and treatment. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 79-99. doi: 10.3934/dcdsb.2018006

[5]

Notice Ringa, Chris T. Bauch. Spatially-implicit modelling of disease-behaviour interactions in the context of non-pharmaceutical interventions. Mathematical Biosciences & Engineering, 2018, 15 (2) : 461-483. doi: 10.3934/mbe.2018021

[6]

Ali Hadi, Saeid Mehrabian. A two-stage data envelopment analysis approach to solve extended transportation problem with non-homogenous costs. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022006

[7]

Bin Li, Jie Sun, Honglei Xu, Min Zhang. A class of two-stage distributionally robust games. Journal of Industrial and Management Optimization, 2019, 15 (1) : 387-400. doi: 10.3934/jimo.2018048

[8]

Holly Gaff, Elsa Schaefer. Optimal control applied to vaccination and treatment strategies for various epidemiological models. Mathematical Biosciences & Engineering, 2009, 6 (3) : 469-492. doi: 10.3934/mbe.2009.6.469

[9]

Jingzhi Li, Hongyu Liu, Qi Wang. Fast imaging of electromagnetic scatterers by a two-stage multilevel sampling method. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 547-561. doi: 10.3934/dcdss.2015.8.547

[10]

Zhiping Chen, Youpan Han. Continuity and stability of two-stage stochastic programs with quadratic continuous recourse. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 197-209. doi: 10.3934/naco.2015.5.197

[11]

Urszula Foryś, Beata Zduniak. Two-stage model of carcinogenic mutations with the influence of delays. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2501-2519. doi: 10.3934/dcdsb.2014.19.2501

[12]

Tugba Sarac, Aydin Sipahioglu, Emine Akyol Ozer. A two-stage solution approach for plastic injection machines scheduling problem. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1289-1314. doi: 10.3934/jimo.2020022

[13]

Eunha Shim. A note on epidemic models with infective immigrants and vaccination. Mathematical Biosciences & Engineering, 2006, 3 (3) : 557-566. doi: 10.3934/mbe.2006.3.557

[14]

René Henrion, Christian Küchler, Werner Römisch. Discrepancy distances and scenario reduction in two-stage stochastic mixed-integer programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 363-384. doi: 10.3934/jimo.2008.4.363

[15]

Chien Hsun Tseng. Applications of a nonlinear optimization solver and two-stage comprehensive Denoising techniques for optimum underwater wideband sonar echolocation system. Journal of Industrial and Management Optimization, 2013, 9 (1) : 205-225. doi: 10.3934/jimo.2013.9.205

[16]

Qingqing Ye. Algorithmic computation of MAP/PH/1 queue with finite system capacity and two-stage vacations. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2459-2477. doi: 10.3934/jimo.2019063

[17]

Chao Mi, Jun Wang, Weijian Mi, Youfang Huang, Zhiwei Zhang, Yongsheng Yang, Jun Jiang, Postolache Octavian. Research on regional clustering and two-stage SVM method for container truck recognition. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1117-1133. doi: 10.3934/dcdss.2019077

[18]

Dan Liu, Shigui Ruan, Deming Zhu. Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions. Mathematical Biosciences & Engineering, 2012, 9 (2) : 347-368. doi: 10.3934/mbe.2012.9.347

[19]

Biswajit Sarkar, Bijoy Kumar Shaw, Taebok Kim, Mitali Sarkar, Dongmin Shin. An integrated inventory model with variable transportation cost, two-stage inspection, and defective items. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1975-1990. doi: 10.3934/jimo.2017027

[20]

Rüdiger Schultz. Two-stage stochastic programs: Integer variables, dominance relations and PDE constraints. Numerical Algebra, Control and Optimization, 2012, 2 (4) : 713-738. doi: 10.3934/naco.2012.2.713

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]