2012, 9(3): 627-645. doi: 10.3934/mbe.2012.9.627

The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat

1. 

Irstea, UMR ITAP, 361 rue Jean-François Breton 34196 Montpellier, & Modemic (Inra/Inria), UMR Mistea, 2 place Viala, 34060 Montpellier, France

2. 

ISSATSO (Université de Sousse) Cité Taffala, 4003 Sousse, & LAMSIN-ENIT, Université Tunis El-manar BP 37, 1002 Tunis, Tunisia

3. 

INRA UR0050, Laboratoire de Biotechnologie de l’Environnement, Avenue des Étangs, 11100 Narbonne, and Modemic (Inra/Inria), UMR Mistea, 2 place Viala, 34060 Montpellier, France

Received  November 2011 Revised  April 2012 Published  July 2012

A mathematical model involving a syntrophic relationship between two populations of bacteria in a continuous culture is proposed. A detailed qualitative analysis is carried out as well as the analysis of the local and global stability of the equilibria. We demonstrate, under general assumptions of monotonicity which are relevant from an applied point of view, the asymptotic stability of the positive equilibrium point which corresponds to the coexistence of the two bacteria. A syntrophic relationship in the anaerobic digestion process is proposed as a real candidate for this model.
Citation: Tewfik Sari, Miled El Hajji, Jérôme Harmand. The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat. Mathematical Biosciences & Engineering, 2012, 9 (3) : 627-645. doi: 10.3934/mbe.2012.9.627
References:
[1]

Y. Aota and H. Nakajima, Mutualistic relationships between phytoplankton and bacteria caused by carbon excretion from phytoplankton, Ecological Research, 16 (2001), 289-299. doi: 10.1046/j.1440-1703.2001.00396.x.

[2]

M. M. Ballyk and G. S. K. Wolkowicz, Classical and resource-based competition: A unifying graphical approach, J. Math. Biol., 62 (2011), 81-109. doi: 10.1007/s00285-010-0328-x.

[3]

G. Bratbak and T. F. Thingstad, Phytoplankton-bacteria interactions: An apparent paradox? Analysis of a model system with both competition and commensalism, Ecological Research, 25 (1985), 23-30.

[4]

M. P. Bryant, E. A. Wolin, M. J. Wolin and R. S. Wolfe, Methanobacillus omelianskii, a symbiotic association of two species of bacteria, Arch. Microbiol., 59 (1967), 20-31.

[5]

J. Chase and M. Leibold, "Ecological Niches - Linking Classical and Contemporary Approaches," The University of Chicago Press, 2003.

[6]

M. El Hajji, J. Harmand, H. Chaker and C. Lobry, Association between competition and obligate mutualism in a chemostat, J. Biol. Dynamics, 3 (2009), 635-647.

[7]

M. El Hajji, F. Mazenc and J. Harmand, A mathematical study of a syntrophic relationship of a model of anaerobic digestion process, Math. Biosci. Eng., 7 (2010), 641-656.

[8]

M. El Hajji and A. Rapaport, Practical coexistence of two species in the chemostat-A slow-fast characterization, Math. Biosci., 218 (2009), 33-39.

[9]

M. El Hajji, T. Sari and J. Harmand, Analyse d'un relation syntrophique: Cas d'un chemostat, in "Proceedings of the 5th Conference on Trends in Applied Mathematics in Tunisia, Algeria, Morocco, Sousse" (eds. M. Hassine and M. Moakher), 23-26 Avril 2011, Centre de Publication Universitaire, Tunisia, (2011), 451-456.

[10]

H. I. Freedman, R. Kumar, A. K. Easton and M. Singh, Mathematical models of predator mutualists, Canadian Appl. Math. Quart., 9 (2001), 99-111.

[11]

C. Katsuyama, S. Nakaoka, Y. Takeuchi, K. Tago, M. Hayatsu and K. Kato, A mathematical model of syntrophic cocultures in the chemostat, J. Theor. Biol., 256 (2009), 644-654.

[12]

R. Kreikenbohm and E. Bohl, A mathematical model of syntrophic cocultures in the chemostat, FEMS Microbiol. Ecol., 38 (1986), 131-140.

[13]

H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition," Cambridge Studies in Mathematical Biology, 13, Cambridge University Press, Cambridge, 1995.

[14]

H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.

[15]

The IWA Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment, Activated sludge models ASM1, ASM2, ASM2d and ASM3, Scientific and Technical Report No. 9, (2000), IWA publishing, 130 pp.

show all references

References:
[1]

Y. Aota and H. Nakajima, Mutualistic relationships between phytoplankton and bacteria caused by carbon excretion from phytoplankton, Ecological Research, 16 (2001), 289-299. doi: 10.1046/j.1440-1703.2001.00396.x.

[2]

M. M. Ballyk and G. S. K. Wolkowicz, Classical and resource-based competition: A unifying graphical approach, J. Math. Biol., 62 (2011), 81-109. doi: 10.1007/s00285-010-0328-x.

[3]

G. Bratbak and T. F. Thingstad, Phytoplankton-bacteria interactions: An apparent paradox? Analysis of a model system with both competition and commensalism, Ecological Research, 25 (1985), 23-30.

[4]

M. P. Bryant, E. A. Wolin, M. J. Wolin and R. S. Wolfe, Methanobacillus omelianskii, a symbiotic association of two species of bacteria, Arch. Microbiol., 59 (1967), 20-31.

[5]

J. Chase and M. Leibold, "Ecological Niches - Linking Classical and Contemporary Approaches," The University of Chicago Press, 2003.

[6]

M. El Hajji, J. Harmand, H. Chaker and C. Lobry, Association between competition and obligate mutualism in a chemostat, J. Biol. Dynamics, 3 (2009), 635-647.

[7]

M. El Hajji, F. Mazenc and J. Harmand, A mathematical study of a syntrophic relationship of a model of anaerobic digestion process, Math. Biosci. Eng., 7 (2010), 641-656.

[8]

M. El Hajji and A. Rapaport, Practical coexistence of two species in the chemostat-A slow-fast characterization, Math. Biosci., 218 (2009), 33-39.

[9]

M. El Hajji, T. Sari and J. Harmand, Analyse d'un relation syntrophique: Cas d'un chemostat, in "Proceedings of the 5th Conference on Trends in Applied Mathematics in Tunisia, Algeria, Morocco, Sousse" (eds. M. Hassine and M. Moakher), 23-26 Avril 2011, Centre de Publication Universitaire, Tunisia, (2011), 451-456.

[10]

H. I. Freedman, R. Kumar, A. K. Easton and M. Singh, Mathematical models of predator mutualists, Canadian Appl. Math. Quart., 9 (2001), 99-111.

[11]

C. Katsuyama, S. Nakaoka, Y. Takeuchi, K. Tago, M. Hayatsu and K. Kato, A mathematical model of syntrophic cocultures in the chemostat, J. Theor. Biol., 256 (2009), 644-654.

[12]

R. Kreikenbohm and E. Bohl, A mathematical model of syntrophic cocultures in the chemostat, FEMS Microbiol. Ecol., 38 (1986), 131-140.

[13]

H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition," Cambridge Studies in Mathematical Biology, 13, Cambridge University Press, Cambridge, 1995.

[14]

H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.

[15]

The IWA Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment, Activated sludge models ASM1, ASM2, ASM2d and ASM3, Scientific and Technical Report No. 9, (2000), IWA publishing, 130 pp.

[1]

Miled El Hajji, Frédéric Mazenc, Jérôme Harmand. A mathematical study of a syntrophic relationship of a model of anaerobic digestion process. Mathematical Biosciences & Engineering, 2010, 7 (3) : 641-656. doi: 10.3934/mbe.2010.7.641

[2]

Marion Weedermann. Analysis of a model for the effects of an external toxin on anaerobic digestion. Mathematical Biosciences & Engineering, 2012, 9 (2) : 445-459. doi: 10.3934/mbe.2012.9.445

[3]

S. Ouchtout, Z. Mghazli, J. Harmand, A. Rapaport, Z. Belhachmi. Analysis of an anaerobic digestion model in landfill with mortality term. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2333-2346. doi: 10.3934/cpaa.2020101

[4]

Wei Feng, Michael T. Cowen, Xin Lu. Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences & Engineering, 2014, 11 (4) : 823-839. doi: 10.3934/mbe.2014.11.823

[5]

Zhiqi Lu. Global stability for a chemostat-type model with delayed nutrient recycling. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 663-670. doi: 10.3934/dcdsb.2004.4.663

[6]

Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari. Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences & Engineering, 2016, 13 (4) : 631-652. doi: 10.3934/mbe.2016012

[7]

Willard S. Keeran, Patrick D. Leenheer, Sergei S. Pilyugin. Feedback-mediated coexistence and oscillations in the chemostat. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 321-351. doi: 10.3934/dcdsb.2008.9.321

[8]

Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721

[9]

Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255

[10]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[11]

Christian Lax, Sebastian Walcher. A note on global asymptotic stability of nonautonomous master equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2143-2149. doi: 10.3934/dcdsb.2013.18.2143

[12]

Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer. On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences & Engineering, 2007, 4 (2) : 319-338. doi: 10.3934/mbe.2007.4.319

[13]

Kentarou Fujie. Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 203-209. doi: 10.3934/dcdss.2020011

[14]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[15]

Shiwang Ma, Xiao-Qiang Zhao. Global asymptotic stability of minimal fronts in monostable lattice equations. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 259-275. doi: 10.3934/dcds.2008.21.259

[16]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[17]

Charlotte Beauthier, Joseph J. Winkin, Denis Dochain. Input/state invariant LQ-optimal control: Application to competitive coexistence in a chemostat. Evolution Equations and Control Theory, 2015, 4 (2) : 143-158. doi: 10.3934/eect.2015.4.143

[18]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[19]

Xingwang Yu, Sanling Yuan. Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2373-2390. doi: 10.3934/dcdsb.2020014

[20]

Frederic Mazenc, Gonzalo Robledo, Michael Malisoff. Stability and robustness analysis for a multispecies chemostat model with delays in the growth rates and uncertainties. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1851-1872. doi: 10.3934/dcdsb.2018098

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]