# American Institute of Mathematical Sciences

2012, 9(3): 697-697. doi: 10.3934/mbe.2012.9.697

## Erratum to: Investigating the steady state of multicellular sheroids by revisiting the two-fluid model

 1 Università degli Studi di Firenze, Dipartimento di Matematica, "Ulisse Dini", Viale Morgagni 67/A, I-50134, Firenze 2 Dipartimento di Matematica "U. Dini", Universita' di Firenze, Viale Morgagni 67/A, 50134 Firenze 3 Istituto di Analisi dei Sistemi ed Informatica ''A. Ruberti", CNR, Viale Manzoni 30, 00185 Roma

Received  July 2012 Published  July 2012

In our paper [1], equation (45) has been reported incorrectly. Its actual form is as follows: \begin{align}\label{stresscont3} \frac{2\gamma}{R}=&\frac{1}{\nu(1-\nu)}\frac{\chi R^2}{3K}\left\{\frac{R} {\rho_D^{}} \left[1-\left(\frac{\rho_P^{}}{R}\right)^3\right]-\frac{3}{2}\left[1-\left( \frac{\rho_P^{}}{R}\right)^2\right]\right\} \nonumber\\ +&\frac{4}{3}\eta_C\chi\left(\frac{R}{\rho_D^{}}\right)^3\left[1-\left( \frac{\rho_P^{}}{R}\right)^3\right] \nonumber\\ +&2\sqrt{3}\tau_0\left[\ln\frac{\rho_P^{}}{\rho_D^{}}+\frac{1}{3}\ln \frac{\sqrt{2}(\frac{R}{\rho_P^{}})^3 + \sqrt{1+2(\frac{R}{\rho_P^{}})^6}} {\sqrt{2}+\sqrt{3}}\right]. \end{align} The comments that followed Eq. (45) then change accordingly. It is immediate to realize that the presence of $\tau_0$ has two effects: it increases the minimal value of the surface tension needed for the existence of the steady state, and, given $\gamma$, if (45) has a solution this solution is greater than the solution of (35). However, since it is possible that the surface tension $\gamma$ has a monotone dependence on the yield stress $\tau_0$ (both these quantity have their physical origin in the intercellular adhesion bonds), a partial compensation of the effect of the yield stress on the determination of $R$ can be expected.

Citation: Antonio Fasano, Marco Gabrielli, Alberto Gandolfi. Erratum to: Investigating the steady state of multicellular sheroids by revisiting the two-fluid model. Mathematical Biosciences & Engineering, 2012, 9 (3) : 697-697. doi: 10.3934/mbe.2012.9.697
##### References:
 [1] A. Fasano, M. Gabrielli and A. Gandolfi, Investigating the steady state of multicellular spheroids by revisiting the two-fluid model, Math. Biosci. Eng., 8 (2011), 239-252. doi: 10.3934/mbe.2011.8.239.

show all references

##### References:
 [1] A. Fasano, M. Gabrielli and A. Gandolfi, Investigating the steady state of multicellular spheroids by revisiting the two-fluid model, Math. Biosci. Eng., 8 (2011), 239-252. doi: 10.3934/mbe.2011.8.239.
 [1] Antonio Fasano, Marco Gabrielli, Alberto Gandolfi. Investigating the steady state of multicellular spheroids by revisiting the two-fluid model. Mathematical Biosciences & Engineering, 2011, 8 (2) : 239-252. doi: 10.3934/mbe.2011.8.239 [2] Huanyao Wen, Changjiang Zhu. Remarks on global weak solutions to a two-fluid type model. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2839-2856. doi: 10.3934/cpaa.2021072 [3] Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 541-563. doi: 10.3934/dcdsb.2003.3.541 [4] Jin Lai, Huanyao Wen, Lei Yao. Vanishing capillarity limit of the non-conservative compressible two-fluid model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1361-1392. doi: 10.3934/dcdsb.2017066 [5] Lorena Bociu, Jean-Paul Zolésio. Existence for the linearization of a steady state fluid/nonlinear elasticity interaction. Conference Publications, 2011, 2011 (Special) : 184-197. doi: 10.3934/proc.2011.2011.184 [6] Christos Sourdis. Analysis of an irregular boundary layer behavior for the steady state flow of a Boussinesq fluid. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 1039-1059. doi: 10.3934/dcds.2017043 [7] Renjun Duan, Xiongfeng Yang. Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations. Communications on Pure and Applied Analysis, 2013, 12 (2) : 985-1014. doi: 10.3934/cpaa.2013.12.985 [8] Qiangchang Ju, Hailiang Li, Yong Li, Song Jiang. Quasi-neutral limit of the two-fluid Euler-Poisson system. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1577-1590. doi: 10.3934/cpaa.2010.9.1577 [9] Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415 [10] B. Wiwatanapataphee, Theeradech Mookum, Yong Hong Wu. Numerical simulation of two-fluid flow and meniscus interface movement in the electromagnetic continuous steel casting process. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1171-1183. doi: 10.3934/dcdsb.2011.16.1171 [11] Sheng Xu. Derivation of principal jump conditions for the immersed interface method in two-fluid flow simulation. Conference Publications, 2009, 2009 (Special) : 838-845. doi: 10.3934/proc.2009.2009.838 [12] Min Li, Xueke Pu, Shu Wang. Quasineutral limit for the compressible two-fluid Euler–Maxwell equations for well-prepared initial data. Electronic Research Archive, 2020, 28 (2) : 879-895. doi: 10.3934/era.2020046 [13] Long Fan, Cheng-Jie Liu, Lizhi Ruan. Local well-posedness of solutions to the boundary layer equations for compressible two-fluid flow. Electronic Research Archive, 2021, 29 (6) : 4009-4050. doi: 10.3934/era.2021070 [14] Thomas Lepoutre, Salomé Martínez. Steady state analysis for a relaxed cross diffusion model. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 613-633. doi: 10.3934/dcds.2014.34.613 [15] Qi Wang. On the steady state of a shadow system to the SKT competition model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2941-2961. doi: 10.3934/dcdsb.2014.19.2941 [16] Zhendong Fang, Hao Wang. Convergence from two-species Vlasov-Poisson-Boltzmann system to two-fluid incompressible Navier-Stokes-Fourier-Poisson system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4347-4386. doi: 10.3934/dcdsb.2021231 [17] Fuyi Xu, Meiling Chi, Lishan Liu, Yonghong Wu. On the well-posedness and decay rates of strong solutions to a multi-dimensional non-conservative viscous compressible two-fluid system. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2515-2559. doi: 10.3934/dcds.2020140 [18] Haibo Cui, Zhensheng Gao, Haiyan Yin, Peixing Zhang. Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4839-4870. doi: 10.3934/dcds.2016009 [19] Lijuan Wang, Hongling Jiang, Ying Li. Positive steady state solutions of a plant-pollinator model with diffusion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1805-1819. doi: 10.3934/dcdsb.2015.20.1805 [20] Youcef Mammeri, Damien Sellier. A surface model of nonlinear, non-steady-state phloem transport. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1055-1069. doi: 10.3934/mbe.2017055

2018 Impact Factor: 1.313