\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Low viral persistence of an immunological model

Abstract Related Papers Cited by
  • Hepatitis B virus can persist at very low levels in the body in the face of host immunity, and reactive during immunosuppression and sustain the immunological memory to lead to the possible state of 'infection immunity'. To analyze this phenomena quantitatively, a mathematical model which is described by DDEs with relative to cytotoxic T lymphocyte (CTL) response to Hepatitis B virus is used. Using the knowledge of DDEs and the numerical bifurcation analysis techniques, the dynamical behavior of Hopf bifurcation which may lead to the periodic oscillation of populations is analyzed. Domains of low level viral persistence which is possible, either as a stable equilibrium or a stable oscillatory pattern, are identified in parameter space. The virus replication rate appears to have influence to the amplitude of the persisting oscillatory population densities.
    Mathematics Subject Classification: Primary: 34K20, 92C50; Secondary: 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. M. Argium, P. E. Kozarsky and C. Reed, "CDC Health Information for International Travel 2008," Elsevier, Philadelphia, 2007.

    [2]

    S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection, J. Biological Dynamic, 2 (2008), 140-153.doi: 10.1080/17513750701769873.

    [3]

    R. M. Zinkernagel, What is missing in immunology to understand immunity?, Nat. Immunol., 1 (2000), 181-185.doi: 10.1038/79712.

    [4]

    B. Rehermann, C. Ferrari, C. Pasquinelli and F. V. Chisari, The hepatitis B virus persists for decades after patient's recovery from acute viral hepatitis despite active maintenance of a cytotoxic T-lymphocyte response, Nat. Med., 2 (1996), 1104-1108.doi: 10.1038/nm1096-1104.

    [5]

    L. Tatyana, R. Dirk and B. Gennady, Numerical bifurcation analysis of immunological models with time delays, Journal of Computational and Applied Mathematics, 184 (2005), 165-176.doi: 10.1016/j.cam.2004.08.019.

    [6]

    L. Tatyana and E. Koen, Low level viral persistence after infection with LCMV: A quantitative insight through numerical bifurcation analysis, Mathematical Biosciences, 173 (2001), 1-23.doi: 10.1016/S0025-5564(01)00072-4.

    [7]

    G. Bocharov and B. Ludewig, etc., Underwhelming the immune response: Effect of slow virus growth rates on $CD8^+ T$ lymphocyte responses, J. Virol., 78 (2004), 2247-2254.doi: 10.1128/JVI.78.5.2247-2254.2004.

    [8]

    C. T. H. Baker, Retarded differential equations, J. Comput. Appl. Math., 125 (2000), 309-335.doi: 10.1016/S0377-0427(00)00476-3.

    [9]

    G. A. Bocharov and F. A. Rihan, Numerical modelling in biosciences using delay differential equations, J. Comput. Appl. Math., 125 (2000), 183-199.doi: 10.1016/S0377-0427(00)00468-4.

    [10]

    Z. H. Wang and H. Y. Hu, Stability switches of time-delayed dynamic systems with unknown parameters, Journal of Sound and Vibration, 233 (2000), 215-233.doi: 10.1006/jsvi.1999.2817.

    [11]

    Z. H. Wang and H. Y. Hu, Delay independent stability of retarded dynamic system of multiple degrees of freedom, Journal of Sound and Vibration, 226 (1999), 57-81.doi: 10.1006/jsvi.1999.2282.

    [12]

    S. Q. Ma, Z. S. Feng and Q. S. Lu, The double Hopf bifurcation of a neuron model with time delay, Int. J. Bifurcation and Chaos, 19 (2009), 3733-3751.doi: 10.1142/S0218127409025080.

    [13]

    S. Q. Ma and Z. S. Feng, Fold-Hopf Bifurcation of the Rose-Hindmarsh model with time delay, Int. J. Bifurcation and Chaos, 19 (2011), 437-452.doi: 10.1142/S0218127411028490.

    [14]

    K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations, J. Comput. Appl. Math., 125 (2000), 265-275.doi: 10.1016/S0377-0427(00)00472-6.

    [15]

    K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Software, 28 (2002), 1-21.doi: 10.1145/513001.513002.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(29) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return