• Previous Article
    Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes
  • MBE Home
  • This Issue
  • Next Article
    The impact of migrant workers on the tuberculosis transmission: General models and a case study for China
2012, 9(4): 809-817. doi: 10.3934/mbe.2012.9.809

Low viral persistence of an immunological model

1. 

Department of Mathematics, China Agricultural University, Beijing 100083

Received  July 2011 Revised  May 2012 Published  October 2012

Hepatitis B virus can persist at very low levels in the body in the face of host immunity, and reactive during immunosuppression and sustain the immunological memory to lead to the possible state of 'infection immunity'. To analyze this phenomena quantitatively, a mathematical model which is described by DDEs with relative to cytotoxic T lymphocyte (CTL) response to Hepatitis B virus is used. Using the knowledge of DDEs and the numerical bifurcation analysis techniques, the dynamical behavior of Hopf bifurcation which may lead to the periodic oscillation of populations is analyzed. Domains of low level viral persistence which is possible, either as a stable equilibrium or a stable oscillatory pattern, are identified in parameter space. The virus replication rate appears to have influence to the amplitude of the persisting oscillatory population densities.
Citation: Suqi Ma. Low viral persistence of an immunological model. Mathematical Biosciences & Engineering, 2012, 9 (4) : 809-817. doi: 10.3934/mbe.2012.9.809
References:
[1]

P. M. Argium, P. E. Kozarsky and C. Reed, "CDC Health Information for International Travel 2008," Elsevier, Philadelphia, 2007.

[2]

S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection, J. Biological Dynamic, 2 (2008), 140-153. doi: 10.1080/17513750701769873.

[3]

R. M. Zinkernagel, What is missing in immunology to understand immunity?, Nat. Immunol., 1 (2000), 181-185. doi: 10.1038/79712.

[4]

B. Rehermann, C. Ferrari, C. Pasquinelli and F. V. Chisari, The hepatitis B virus persists for decades after patient's recovery from acute viral hepatitis despite active maintenance of a cytotoxic T-lymphocyte response, Nat. Med., 2 (1996), 1104-1108. doi: 10.1038/nm1096-1104.

[5]

L. Tatyana, R. Dirk and B. Gennady, Numerical bifurcation analysis of immunological models with time delays, Journal of Computational and Applied Mathematics, 184 (2005), 165-176. doi: 10.1016/j.cam.2004.08.019.

[6]

L. Tatyana and E. Koen, Low level viral persistence after infection with LCMV: A quantitative insight through numerical bifurcation analysis, Mathematical Biosciences, 173 (2001), 1-23. doi: 10.1016/S0025-5564(01)00072-4.

[7]

G. Bocharov and B. Ludewig, etc., Underwhelming the immune response: Effect of slow virus growth rates on $CD8^+ T$ lymphocyte responses, J. Virol., 78 (2004), 2247-2254. doi: 10.1128/JVI.78.5.2247-2254.2004.

[8]

C. T. H. Baker, Retarded differential equations, J. Comput. Appl. Math., 125 (2000), 309-335. doi: 10.1016/S0377-0427(00)00476-3.

[9]

G. A. Bocharov and F. A. Rihan, Numerical modelling in biosciences using delay differential equations, J. Comput. Appl. Math., 125 (2000), 183-199. doi: 10.1016/S0377-0427(00)00468-4.

[10]

Z. H. Wang and H. Y. Hu, Stability switches of time-delayed dynamic systems with unknown parameters, Journal of Sound and Vibration, 233 (2000), 215-233. doi: 10.1006/jsvi.1999.2817.

[11]

Z. H. Wang and H. Y. Hu, Delay independent stability of retarded dynamic system of multiple degrees of freedom, Journal of Sound and Vibration, 226 (1999), 57-81. doi: 10.1006/jsvi.1999.2282.

[12]

S. Q. Ma, Z. S. Feng and Q. S. Lu, The double Hopf bifurcation of a neuron model with time delay, Int. J. Bifurcation and Chaos, 19 (2009), 3733-3751. doi: 10.1142/S0218127409025080.

[13]

S. Q. Ma and Z. S. Feng, Fold-Hopf Bifurcation of the Rose-Hindmarsh model with time delay, Int. J. Bifurcation and Chaos, 19 (2011), 437-452. doi: 10.1142/S0218127411028490.

[14]

K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations, J. Comput. Appl. Math., 125 (2000), 265-275. doi: 10.1016/S0377-0427(00)00472-6.

[15]

K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Software, 28 (2002), 1-21. doi: 10.1145/513001.513002.

show all references

References:
[1]

P. M. Argium, P. E. Kozarsky and C. Reed, "CDC Health Information for International Travel 2008," Elsevier, Philadelphia, 2007.

[2]

S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection, J. Biological Dynamic, 2 (2008), 140-153. doi: 10.1080/17513750701769873.

[3]

R. M. Zinkernagel, What is missing in immunology to understand immunity?, Nat. Immunol., 1 (2000), 181-185. doi: 10.1038/79712.

[4]

B. Rehermann, C. Ferrari, C. Pasquinelli and F. V. Chisari, The hepatitis B virus persists for decades after patient's recovery from acute viral hepatitis despite active maintenance of a cytotoxic T-lymphocyte response, Nat. Med., 2 (1996), 1104-1108. doi: 10.1038/nm1096-1104.

[5]

L. Tatyana, R. Dirk and B. Gennady, Numerical bifurcation analysis of immunological models with time delays, Journal of Computational and Applied Mathematics, 184 (2005), 165-176. doi: 10.1016/j.cam.2004.08.019.

[6]

L. Tatyana and E. Koen, Low level viral persistence after infection with LCMV: A quantitative insight through numerical bifurcation analysis, Mathematical Biosciences, 173 (2001), 1-23. doi: 10.1016/S0025-5564(01)00072-4.

[7]

G. Bocharov and B. Ludewig, etc., Underwhelming the immune response: Effect of slow virus growth rates on $CD8^+ T$ lymphocyte responses, J. Virol., 78 (2004), 2247-2254. doi: 10.1128/JVI.78.5.2247-2254.2004.

[8]

C. T. H. Baker, Retarded differential equations, J. Comput. Appl. Math., 125 (2000), 309-335. doi: 10.1016/S0377-0427(00)00476-3.

[9]

G. A. Bocharov and F. A. Rihan, Numerical modelling in biosciences using delay differential equations, J. Comput. Appl. Math., 125 (2000), 183-199. doi: 10.1016/S0377-0427(00)00468-4.

[10]

Z. H. Wang and H. Y. Hu, Stability switches of time-delayed dynamic systems with unknown parameters, Journal of Sound and Vibration, 233 (2000), 215-233. doi: 10.1006/jsvi.1999.2817.

[11]

Z. H. Wang and H. Y. Hu, Delay independent stability of retarded dynamic system of multiple degrees of freedom, Journal of Sound and Vibration, 226 (1999), 57-81. doi: 10.1006/jsvi.1999.2282.

[12]

S. Q. Ma, Z. S. Feng and Q. S. Lu, The double Hopf bifurcation of a neuron model with time delay, Int. J. Bifurcation and Chaos, 19 (2009), 3733-3751. doi: 10.1142/S0218127409025080.

[13]

S. Q. Ma and Z. S. Feng, Fold-Hopf Bifurcation of the Rose-Hindmarsh model with time delay, Int. J. Bifurcation and Chaos, 19 (2011), 437-452. doi: 10.1142/S0218127411028490.

[14]

K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations, J. Comput. Appl. Math., 125 (2000), 265-275. doi: 10.1016/S0377-0427(00)00472-6.

[15]

K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Software, 28 (2002), 1-21. doi: 10.1145/513001.513002.

[1]

Hongying Shu, Lin Wang. Global stability and backward bifurcation of a general viral infection model with virus-driven proliferation of target cells. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1749-1768. doi: 10.3934/dcdsb.2014.19.1749

[2]

Ting Guo, Haihong Liu, Chenglin Xu, Fang Yan. Global stability of a diffusive and delayed HBV infection model with HBV DNA-containing capsids and general incidence rate. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4223-4242. doi: 10.3934/dcdsb.2018134

[3]

Alexander Rezounenko. Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1547-1563. doi: 10.3934/dcdsb.2017074

[4]

Alexander Rezounenko. Viral infection model with diffusion and state-dependent delay: Stability of classical solutions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1091-1105. doi: 10.3934/dcdsb.2018143

[5]

Jaouad Danane. Optimal control of viral infection model with saturated infection rate. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 363-375. doi: 10.3934/naco.2020031

[6]

Jinhu Xu, Yicang Zhou. Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences & Engineering, 2016, 13 (2) : 343-367. doi: 10.3934/mbe.2015006

[7]

Hong Yang, Junjie Wei. Dynamics of spatially heterogeneous viral model with time delay. Communications on Pure and Applied Analysis, 2020, 19 (1) : 85-102. doi: 10.3934/cpaa.2020005

[8]

Stephen Pankavich, Deborah Shutt. An in-host model of HIV incorporating latent infection and viral mutation. Conference Publications, 2015, 2015 (special) : 913-922. doi: 10.3934/proc.2015.0913

[9]

Wei Wang, Wanbiao Ma, Xiulan Lai. Sufficient conditions for global dynamics of a viral infection model with nonlinear diffusion. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3989-4011. doi: 10.3934/dcdsb.2020271

[10]

Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525

[11]

Zhixing Hu, Weijuan Pang, Fucheng Liao, Wanbiao Ma. Analysis of a CD4$^+$ T cell viral infection model with a class of saturated infection rate. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 735-745. doi: 10.3934/dcdsb.2014.19.735

[12]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Taza Gul, Fawad Hussain. A fractional order HBV model with hospitalization. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 957-974. doi: 10.3934/dcdss.2020056

[13]

Don A. Jones, Hal L. Smith, Horst R. Thieme. Spread of viral infection of immobilized bacteria. Networks and Heterogeneous Media, 2013, 8 (1) : 327-342. doi: 10.3934/nhm.2013.8.327

[14]

Jinliang Wang, Jiying Lang, Xianning Liu. Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3215-3233. doi: 10.3934/dcdsb.2015.20.3215

[15]

Zhikun She, Xin Jiang. Threshold dynamics of a general delayed within-host viral infection model with humoral immunity and two modes of virus transmission. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3835-3861. doi: 10.3934/dcdsb.2020259

[16]

Yu Ji, Lan Liu. Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 133-149. doi: 10.3934/dcdsb.2016.21.133

[17]

Simona Viale, Elisa Caudera, Sandro Bertolino, Ezio Venturino. A viral transmission model for foxes-cottontails-hares interaction: Infection through predation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5965-5997. doi: 10.3934/dcdsb.2021158

[18]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[19]

Stephen Pankavich, Nathan Neri, Deborah Shutt. Bistable dynamics and Hopf bifurcation in a refined model of early stage HIV infection. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2867-2893. doi: 10.3934/dcdsb.2020044

[20]

Hui Cao, Yicang Zhou, Zhien Ma. Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1399-1417. doi: 10.3934/mbe.2013.10.1399

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]