-
Previous Article
Differential impact of sickle cell trait on symptomatic and asymptomatic malaria
- MBE Home
- This Issue
-
Next Article
Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes
Evolution of uncontrolled proliferation and the angiogenic switch in cancer
1. | Department of Life Sciences, Scottsdale Community College, 9000 E. Chaparral Rd., Scottsdale, AZ 85256, United States |
2. | School of Mathematical and Statistical Sciences, Arizona State University, PO Box 874501, Tempe AZ, 85287-1804, United States |
References:
[1] |
B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson, "Molecular Biology of the Cell," $3^{rd}$ edition, Garland, New York, 1994. |
[2] |
F. I. Ataullakhanov, S. V. Komarova, M. V. Martynov and V. M. Vitvitsky, A possible role of adenylate metabolism in human erythrocytes: 2. adenylate metabolism is able to improve the erythrocyte volume stabilization, J. Theor. Biol., 183 (1996), 307-316.
doi: 10.1006/jtbi.1996.0222. |
[3] |
F. I. Ataullakhanov, S. V. Komarova and V. M. Vitvitsky, A possible role of adenylate metabolism in human erythrocytes: simple mathematical model, J. Theor. Biol., 179 (1996), 75-86.
doi: 10.1006/jtbi.1996.0050. |
[4] |
F. I. Ataullakhanov and V. M. Vitvitsky, What determines the intracellular ATP concentration?, Biosci. Rep., 22 (2002), 501-511.
doi: 10.1023/A:1022069718709. |
[5] |
F. I. Ataullakhanov, V. M. Vitvitsky, A. M. Zhabotinsky, A. V. Pichugin, O. V. Platonova, B. N. Kholodenko and L. I. Ehrlich, The regulation of glycolysis in human erythrocytes: the dependence of the glycolytic flux on the ATP concentration, Eur. J. Biochem., 115 (1981), 359-365.
doi: 10.1111/j.1432-1033.1981.tb05246.x. |
[6] |
D. E. Atkinson, "Cellular Energy Metabolism and Its Regulation," Academic Press, New York, 1977. |
[7] |
L. E. Benjamin, I. Hemo and E. Keshet, A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF, Development, 125 (1998), 1591-1598. |
[8] |
T. Bønsdorff, M. Gautier, W. Farstad, K. Rønningen, F. Lingaas and I. Olsaker, Mapping of the bovine genes of the de novo AMP synthesis pathway, Anim. Genet., 35 (2004), 438-444.
doi: 10.1111/j.1365-2052.2004.01201.x. |
[9] |
J. J. Boza, D. Moënnoz, C. E. Bournot, S. Blum, I. Zbinden, P. A. Finot and O. Ballèvre, Role of glutamine on the de novo purine nucleotide synthesis in Caco-2 cells, Eur. J. Nutr., 39 (2000), 38-46. |
[10] |
D. J. Brat and E. G. Van Meir, Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma, Lab. Invest., 84 (2004), 397-405.
doi: 10.1038/labinvest.3700070. |
[11] |
J. P. Collins, "Evolutionary ecology" and the use of natural selection in ecological theory, J. Hist. Biol., 19 (1986), 257-288.
doi: 10.1007/BF00138879. |
[12] |
J. de Grouchy and C. de Nava, A chromosomal theory of carcinogenesis, Ann. Intern. Med., 69 (1968), 381-391. |
[13] |
F. Du, X.-H. Zhu, Y. Zhang, M. Friedman, N. Zhang adn K. Uqurbil and W. Chen, Tightly coupled brain activity and cerebral ATP metabolic rate, Proc. Nat. Acad. Sci. USA, 105 (2008), 6409-6414.
doi: 10.1073/pnas.0710766105. |
[14] |
I. F. Dunn, O. Heese and P. McL. Black, Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs, J. Neuro-Onco., 50 (2000), 121-137.
doi: 10.1023/A:1006436624862. |
[15] |
D. Gammack, H. M. Byrne and C. E. Lewis, Estimating the selective advantage of mutant p53 tumour cells to repeated rounds of hypoxia, Bull. Math. Biol., 63 (2001), 135-166.
doi: 10.1006/bulm.2000.0210. |
[16] |
S. A. H. Geritz, É. Kisdi, G. Meszéna and J. A. J. Metz, Evolutionarily singular stategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12 (1998), 35-57.
doi: 10.1023/A:1006554906681. |
[17] |
A. C. Giese, "Cell Physiology," $5^{th}$ edition, Saunders, Philadelphia, 1973. |
[18] |
M. Greaves, Darwinian medicine: A case for cancer, Nature Rev. Cancer, 7 (2007), 213-221. |
[19] |
M. Greaves and C. C. Maley, Clonal evolution in cancer, Nature, 481 (2012), 306-313.
doi: 10.1038/nature10762. |
[20] |
D. Hanahan and J. Folkman, Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis, Cell, 86 (1996), 353-364.
doi: 10.1016/S0092-8674(00)80108-7. |
[21] |
D. Hanahan and R. A. Weinberg, The hallmarks of cancer, Cell, 100 (2000), 57-70.
doi: 10.1016/S0092-8674(00)81683-9. |
[22] |
D. Hanahan and R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, 144 (2011), 646-674.
doi: 10.1016/j.cell.2011.02.013. |
[23] |
D. G. Hardie, D. Carling and M. Carlson, The AMP-activated/SNF1 protein kinase subfamily: Metabolic sensors of the eukaryotic cell?, Ann. Rev. Biochem., 67 (1998), 821-855.
doi: 10.1146/annurev.biochem.67.1.821. |
[24] |
T. S. Hauschka, The chromosomes in ontogeny and oncogeny, Cancer Res., 21 (1961), 957-974. |
[25] |
J. Holash, P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yancopolous and S. J. Weigand, Vessel cooperation, regression and growth in tumors mediated by angiopoietins and VEGF, Science, 221 (1998), 1994-1998. |
[26] |
J. Maynard Smith, "Evolution and the Theory of Games," Cambridge University Press, Cambridge, 1982. |
[27] |
J. Maynard Smith and G. R. Price, The logic of animal conflict, Nature, 246 (1973), 15-18.
doi: 10.1038/246015a0. |
[28] |
A. Joshi and B. O. Palsson, Metabolic dynamics in the human red cell. Parts 1-2, J. Theor. Biol., 141 (1989), 515-545.
doi: 10.1016/S0022-5193(89)80233-4. |
[29] |
A. Joshi and B. O. Palsson, Metabolic dynamics in the human red cell. Parts 3-4, J. Theor. Biol., 142 (1990), 41-85.
doi: 10.1016/S0022-5193(05)80012-8. |
[30] |
W. G. Kaelin and P. J. Ratcliffe, Oxygen sensiing by metazoans: The central role of the HIF hydroxylase pathway, Mol. Cell, 30 (2008), 393-402.
doi: 10.1016/j.molcel.2008.04.009. |
[31] |
G. Karoubi, D. J. Stewart and D. W. Courtman, A population analysis of VEGF transgene expression and secretion, Biotech. Bioeng., 101 (2008), 1083-1093.
doi: 10.1002/bit.21993. |
[32] |
B. Kaur, C. Tan, D. J. Brat, D. E. Post and E. G. Van Meir, Gene and hypoxic regulation of angiogenesis in gliomas, J. Neuro-Oncol., 70 (2004), 229-243.
doi: 10.1007/s11060-004-2752-5. |
[33] |
D. G. Kilburn, M. D. Lilly and F. C. Webb, The energetics of mammalian cell growth, J. Cell Sci., 4 (1969), 645-654. |
[34] |
L. A. Lai, R. Kostadivov, M. T. Barrett, D. A. Peiffer, D. Pokholok, R. Odze, C. A. Sanchez, C. C. Maley, B. J. Reid, K. L. Gunderson and P. S. Rabinovitch, Deletion at fragile sites is a common and early event in Barrett's esophagus, Mol. Cancer Res., 8 (2010), 1084-1094. |
[35] |
L. W. Law, Origin of the resistance of leukaemic cells to folic acid antagonists, Nature, 169 (1952), 628-629.
doi: 10.1038/169628a0. |
[36] |
A. M. Leroi, V. Koufopanou and A. Burt, Cancer selection, Nature Rev. Cancer, 3 (2003), 226-231. |
[37] |
A. Levan and J. J. Biesele, Role of chromosomes in cancerogenesis, as studied in serial tissue culture of mammalian cells, Ann. N. Y. Acad. Sci., 71 (1958), 1022-1053.
doi: 10.1111/j.1749-6632.1958.tb46820.x. |
[38] |
M. V. Martinov, A. G. Plotnikov, V. M. Vitvitsky and F. I. Ataullakhanov, Deficiencies of glycolytic enzymes as a possible cause of hemolytic anemia, Biochim. Biophys. Acta, 1474 (2000), 75-87.
doi: 10.1016/S0304-4165(99)00218-4. |
[39] |
L. M. Merlo, J. W. Pepper, B. J. Reid and C. C. Maley, Cancer as an evolutionary and ecological process, Nature Rev. Cancer, 6 (2006), 924-935. |
[40] |
L. M. Merlo, N. A. Shah, X. Li, P. L. Blount, T. L. Vaughan, B. J. Reid and C. C. Maley, A comprehensive survey of clonal diversity measures in Barrett's esophagus as biomarkers of progression to esophageal adenocarcinoma, Cancer Prev. Res., 3 (2010), 1388-1397. |
[41] |
J. A. J. Metz, R. Nesbit and S. A. H. Geritz, How should we define 'fitness' for general ecological scenarios?, Trends Ecol. Evol., 7 (1992), 198-202. |
[42] |
J. D. Nagy, Competition and natural selection in a mathematical model of cancer, Bull. Math. Biol., 66 (2004), 663-687.
doi: 10.1016/j.bulm.2003.10.001. |
[43] |
J. D. Nagy, The ecology and evolutionary biology of cancer: A review of mathematical models of necrosis and tumor cell diversity, Math. Biosci. Eng., 2 (2005), 381-418. |
[44] |
J. D. Nagy, E. M. Victor and J. H. Cropper, Why don't all whales have cancer? A novel hypothesis resolving Peto's paradox, Int. Comp. Biol., 47 (2007), 317-328.
doi: 10.1093/icb/icm062. |
[45] |
N. Navin, J. Kendall, J. Troge, P. Andrews, L. Rodgers, J. McIndoo, K. Cook, A. Stapansky, D. Levy, D. Esposito, L. Muthuswamy, A. Krasnitz, W. R. McCombie, J. Hicks and M. Wiglerm, Tumour evolution inferred by single-cell sequencing, Nature, 472 (2011), 90-94.
doi: 10.1038/nature09807. |
[46] |
G. Neufeld, T. Cohen, S. Gengrinovitch and Z. Poltorak, Vascular endothelial growth factor and its receptors, FASEB J., 13 (1999), 9-22. |
[47] |
P. C. Nowell, The clonal evolution of tumor cell populations, Science, 194 (1976), 23-28.
doi: 10.1126/science.959840. |
[48] |
K. Parvinen, Evolutionary suicide, Acta Biotheor., 53 (2005), 241-264.
doi: 10.1007/s10441-005-2531-5. |
[49] |
K. Pavlov and C. C. Maley, New models of neoplastic progression in Barrett's esophagus, Biochem. Soc. Trans., 38 (2010), 331-336.
doi: 10.1042/BST0380331. |
[50] |
C. M. Perrins, Survival of young swifts in relation to brood size, Nature, 201 (1964), 1147-1148.
doi: 10.1038/2011147b0. |
[51] |
K. H. Plate, G. Breier, H. A. Weich and W. Risau, Vascular endothelial growth factor is a potent tumour angiogenesis factor in human gliomas in vivo, Nature, 359 (1992), 845-848.
doi: 10.1038/359845a0. |
[52] |
C. M. Robbins, W. A. Tembe, A. Baker, S. Sinari, T. Y. Moses, S. Beckstrom-Sternberg, J. Beckstrom-Sternberg, M. Barrett, J. Long, A. Chinnaiyan, J. Lowey, E. Suh, J. V. Pearson, D. W. Craig, D. B. Angus, K. J. Pienta and J. D. Carpten, Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors, Genome Res., 21 (2011), 47-55.
doi: 10.1101/gr.107961.110. |
[53] |
Y. Rong, D. L. Durden, E. G. Van Meir and D. J. Brat, 'Pseudopalisading' necrosis in glioblastoma: A familiar morphologic feature that links vascular pathology, hypoxia and angiogenesis, J. Neuropathol. Exp. Neurol., 65 (2006), 529-539.
doi: 10.1097/00005072-200606000-00001. |
[54] |
M. Tehrani, T. M. Friedman, J. J. Olson and D. J. Brat, Intravascular thrombosis in central nervous system malignancies: a potential role in astrocytoma progression to glioma, Brain Pathol., 18 (2008), 164-171.
doi: 10.1111/j.1750-3639.2007.00108.x. |
[55] |
P. Vajkoczy, M. Farhadi, A. Gaumann, R. Heidenreich, R. Erber, A. Wunder, J. C. Tonn, M. D. Menger and G. Breier, Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF VEGF receptor-2 and angopietin-2, J. Clin. Invest., 109 (2002), 777-785.
doi: 10.1172/JCI200214105. |
[56] |
G. C. Williams, "Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought," Princeton U Press, Princeton, 1966. |
[57] |
V. C. Wynn-Edwards, Intergroup selection in the evolution of social systems, Nature, 200 (1963), 623-626.
doi: 10.1038/200623a0. |
show all references
References:
[1] |
B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson, "Molecular Biology of the Cell," $3^{rd}$ edition, Garland, New York, 1994. |
[2] |
F. I. Ataullakhanov, S. V. Komarova, M. V. Martynov and V. M. Vitvitsky, A possible role of adenylate metabolism in human erythrocytes: 2. adenylate metabolism is able to improve the erythrocyte volume stabilization, J. Theor. Biol., 183 (1996), 307-316.
doi: 10.1006/jtbi.1996.0222. |
[3] |
F. I. Ataullakhanov, S. V. Komarova and V. M. Vitvitsky, A possible role of adenylate metabolism in human erythrocytes: simple mathematical model, J. Theor. Biol., 179 (1996), 75-86.
doi: 10.1006/jtbi.1996.0050. |
[4] |
F. I. Ataullakhanov and V. M. Vitvitsky, What determines the intracellular ATP concentration?, Biosci. Rep., 22 (2002), 501-511.
doi: 10.1023/A:1022069718709. |
[5] |
F. I. Ataullakhanov, V. M. Vitvitsky, A. M. Zhabotinsky, A. V. Pichugin, O. V. Platonova, B. N. Kholodenko and L. I. Ehrlich, The regulation of glycolysis in human erythrocytes: the dependence of the glycolytic flux on the ATP concentration, Eur. J. Biochem., 115 (1981), 359-365.
doi: 10.1111/j.1432-1033.1981.tb05246.x. |
[6] |
D. E. Atkinson, "Cellular Energy Metabolism and Its Regulation," Academic Press, New York, 1977. |
[7] |
L. E. Benjamin, I. Hemo and E. Keshet, A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF, Development, 125 (1998), 1591-1598. |
[8] |
T. Bønsdorff, M. Gautier, W. Farstad, K. Rønningen, F. Lingaas and I. Olsaker, Mapping of the bovine genes of the de novo AMP synthesis pathway, Anim. Genet., 35 (2004), 438-444.
doi: 10.1111/j.1365-2052.2004.01201.x. |
[9] |
J. J. Boza, D. Moënnoz, C. E. Bournot, S. Blum, I. Zbinden, P. A. Finot and O. Ballèvre, Role of glutamine on the de novo purine nucleotide synthesis in Caco-2 cells, Eur. J. Nutr., 39 (2000), 38-46. |
[10] |
D. J. Brat and E. G. Van Meir, Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma, Lab. Invest., 84 (2004), 397-405.
doi: 10.1038/labinvest.3700070. |
[11] |
J. P. Collins, "Evolutionary ecology" and the use of natural selection in ecological theory, J. Hist. Biol., 19 (1986), 257-288.
doi: 10.1007/BF00138879. |
[12] |
J. de Grouchy and C. de Nava, A chromosomal theory of carcinogenesis, Ann. Intern. Med., 69 (1968), 381-391. |
[13] |
F. Du, X.-H. Zhu, Y. Zhang, M. Friedman, N. Zhang adn K. Uqurbil and W. Chen, Tightly coupled brain activity and cerebral ATP metabolic rate, Proc. Nat. Acad. Sci. USA, 105 (2008), 6409-6414.
doi: 10.1073/pnas.0710766105. |
[14] |
I. F. Dunn, O. Heese and P. McL. Black, Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs, J. Neuro-Onco., 50 (2000), 121-137.
doi: 10.1023/A:1006436624862. |
[15] |
D. Gammack, H. M. Byrne and C. E. Lewis, Estimating the selective advantage of mutant p53 tumour cells to repeated rounds of hypoxia, Bull. Math. Biol., 63 (2001), 135-166.
doi: 10.1006/bulm.2000.0210. |
[16] |
S. A. H. Geritz, É. Kisdi, G. Meszéna and J. A. J. Metz, Evolutionarily singular stategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12 (1998), 35-57.
doi: 10.1023/A:1006554906681. |
[17] |
A. C. Giese, "Cell Physiology," $5^{th}$ edition, Saunders, Philadelphia, 1973. |
[18] |
M. Greaves, Darwinian medicine: A case for cancer, Nature Rev. Cancer, 7 (2007), 213-221. |
[19] |
M. Greaves and C. C. Maley, Clonal evolution in cancer, Nature, 481 (2012), 306-313.
doi: 10.1038/nature10762. |
[20] |
D. Hanahan and J. Folkman, Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis, Cell, 86 (1996), 353-364.
doi: 10.1016/S0092-8674(00)80108-7. |
[21] |
D. Hanahan and R. A. Weinberg, The hallmarks of cancer, Cell, 100 (2000), 57-70.
doi: 10.1016/S0092-8674(00)81683-9. |
[22] |
D. Hanahan and R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, 144 (2011), 646-674.
doi: 10.1016/j.cell.2011.02.013. |
[23] |
D. G. Hardie, D. Carling and M. Carlson, The AMP-activated/SNF1 protein kinase subfamily: Metabolic sensors of the eukaryotic cell?, Ann. Rev. Biochem., 67 (1998), 821-855.
doi: 10.1146/annurev.biochem.67.1.821. |
[24] |
T. S. Hauschka, The chromosomes in ontogeny and oncogeny, Cancer Res., 21 (1961), 957-974. |
[25] |
J. Holash, P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yancopolous and S. J. Weigand, Vessel cooperation, regression and growth in tumors mediated by angiopoietins and VEGF, Science, 221 (1998), 1994-1998. |
[26] |
J. Maynard Smith, "Evolution and the Theory of Games," Cambridge University Press, Cambridge, 1982. |
[27] |
J. Maynard Smith and G. R. Price, The logic of animal conflict, Nature, 246 (1973), 15-18.
doi: 10.1038/246015a0. |
[28] |
A. Joshi and B. O. Palsson, Metabolic dynamics in the human red cell. Parts 1-2, J. Theor. Biol., 141 (1989), 515-545.
doi: 10.1016/S0022-5193(89)80233-4. |
[29] |
A. Joshi and B. O. Palsson, Metabolic dynamics in the human red cell. Parts 3-4, J. Theor. Biol., 142 (1990), 41-85.
doi: 10.1016/S0022-5193(05)80012-8. |
[30] |
W. G. Kaelin and P. J. Ratcliffe, Oxygen sensiing by metazoans: The central role of the HIF hydroxylase pathway, Mol. Cell, 30 (2008), 393-402.
doi: 10.1016/j.molcel.2008.04.009. |
[31] |
G. Karoubi, D. J. Stewart and D. W. Courtman, A population analysis of VEGF transgene expression and secretion, Biotech. Bioeng., 101 (2008), 1083-1093.
doi: 10.1002/bit.21993. |
[32] |
B. Kaur, C. Tan, D. J. Brat, D. E. Post and E. G. Van Meir, Gene and hypoxic regulation of angiogenesis in gliomas, J. Neuro-Oncol., 70 (2004), 229-243.
doi: 10.1007/s11060-004-2752-5. |
[33] |
D. G. Kilburn, M. D. Lilly and F. C. Webb, The energetics of mammalian cell growth, J. Cell Sci., 4 (1969), 645-654. |
[34] |
L. A. Lai, R. Kostadivov, M. T. Barrett, D. A. Peiffer, D. Pokholok, R. Odze, C. A. Sanchez, C. C. Maley, B. J. Reid, K. L. Gunderson and P. S. Rabinovitch, Deletion at fragile sites is a common and early event in Barrett's esophagus, Mol. Cancer Res., 8 (2010), 1084-1094. |
[35] |
L. W. Law, Origin of the resistance of leukaemic cells to folic acid antagonists, Nature, 169 (1952), 628-629.
doi: 10.1038/169628a0. |
[36] |
A. M. Leroi, V. Koufopanou and A. Burt, Cancer selection, Nature Rev. Cancer, 3 (2003), 226-231. |
[37] |
A. Levan and J. J. Biesele, Role of chromosomes in cancerogenesis, as studied in serial tissue culture of mammalian cells, Ann. N. Y. Acad. Sci., 71 (1958), 1022-1053.
doi: 10.1111/j.1749-6632.1958.tb46820.x. |
[38] |
M. V. Martinov, A. G. Plotnikov, V. M. Vitvitsky and F. I. Ataullakhanov, Deficiencies of glycolytic enzymes as a possible cause of hemolytic anemia, Biochim. Biophys. Acta, 1474 (2000), 75-87.
doi: 10.1016/S0304-4165(99)00218-4. |
[39] |
L. M. Merlo, J. W. Pepper, B. J. Reid and C. C. Maley, Cancer as an evolutionary and ecological process, Nature Rev. Cancer, 6 (2006), 924-935. |
[40] |
L. M. Merlo, N. A. Shah, X. Li, P. L. Blount, T. L. Vaughan, B. J. Reid and C. C. Maley, A comprehensive survey of clonal diversity measures in Barrett's esophagus as biomarkers of progression to esophageal adenocarcinoma, Cancer Prev. Res., 3 (2010), 1388-1397. |
[41] |
J. A. J. Metz, R. Nesbit and S. A. H. Geritz, How should we define 'fitness' for general ecological scenarios?, Trends Ecol. Evol., 7 (1992), 198-202. |
[42] |
J. D. Nagy, Competition and natural selection in a mathematical model of cancer, Bull. Math. Biol., 66 (2004), 663-687.
doi: 10.1016/j.bulm.2003.10.001. |
[43] |
J. D. Nagy, The ecology and evolutionary biology of cancer: A review of mathematical models of necrosis and tumor cell diversity, Math. Biosci. Eng., 2 (2005), 381-418. |
[44] |
J. D. Nagy, E. M. Victor and J. H. Cropper, Why don't all whales have cancer? A novel hypothesis resolving Peto's paradox, Int. Comp. Biol., 47 (2007), 317-328.
doi: 10.1093/icb/icm062. |
[45] |
N. Navin, J. Kendall, J. Troge, P. Andrews, L. Rodgers, J. McIndoo, K. Cook, A. Stapansky, D. Levy, D. Esposito, L. Muthuswamy, A. Krasnitz, W. R. McCombie, J. Hicks and M. Wiglerm, Tumour evolution inferred by single-cell sequencing, Nature, 472 (2011), 90-94.
doi: 10.1038/nature09807. |
[46] |
G. Neufeld, T. Cohen, S. Gengrinovitch and Z. Poltorak, Vascular endothelial growth factor and its receptors, FASEB J., 13 (1999), 9-22. |
[47] |
P. C. Nowell, The clonal evolution of tumor cell populations, Science, 194 (1976), 23-28.
doi: 10.1126/science.959840. |
[48] |
K. Parvinen, Evolutionary suicide, Acta Biotheor., 53 (2005), 241-264.
doi: 10.1007/s10441-005-2531-5. |
[49] |
K. Pavlov and C. C. Maley, New models of neoplastic progression in Barrett's esophagus, Biochem. Soc. Trans., 38 (2010), 331-336.
doi: 10.1042/BST0380331. |
[50] |
C. M. Perrins, Survival of young swifts in relation to brood size, Nature, 201 (1964), 1147-1148.
doi: 10.1038/2011147b0. |
[51] |
K. H. Plate, G. Breier, H. A. Weich and W. Risau, Vascular endothelial growth factor is a potent tumour angiogenesis factor in human gliomas in vivo, Nature, 359 (1992), 845-848.
doi: 10.1038/359845a0. |
[52] |
C. M. Robbins, W. A. Tembe, A. Baker, S. Sinari, T. Y. Moses, S. Beckstrom-Sternberg, J. Beckstrom-Sternberg, M. Barrett, J. Long, A. Chinnaiyan, J. Lowey, E. Suh, J. V. Pearson, D. W. Craig, D. B. Angus, K. J. Pienta and J. D. Carpten, Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors, Genome Res., 21 (2011), 47-55.
doi: 10.1101/gr.107961.110. |
[53] |
Y. Rong, D. L. Durden, E. G. Van Meir and D. J. Brat, 'Pseudopalisading' necrosis in glioblastoma: A familiar morphologic feature that links vascular pathology, hypoxia and angiogenesis, J. Neuropathol. Exp. Neurol., 65 (2006), 529-539.
doi: 10.1097/00005072-200606000-00001. |
[54] |
M. Tehrani, T. M. Friedman, J. J. Olson and D. J. Brat, Intravascular thrombosis in central nervous system malignancies: a potential role in astrocytoma progression to glioma, Brain Pathol., 18 (2008), 164-171.
doi: 10.1111/j.1750-3639.2007.00108.x. |
[55] |
P. Vajkoczy, M. Farhadi, A. Gaumann, R. Heidenreich, R. Erber, A. Wunder, J. C. Tonn, M. D. Menger and G. Breier, Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF VEGF receptor-2 and angopietin-2, J. Clin. Invest., 109 (2002), 777-785.
doi: 10.1172/JCI200214105. |
[56] |
G. C. Williams, "Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought," Princeton U Press, Princeton, 1966. |
[57] |
V. C. Wynn-Edwards, Intergroup selection in the evolution of social systems, Nature, 200 (1963), 623-626.
doi: 10.1038/200623a0. |
[1] |
Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3419-3440. doi: 10.3934/dcdss.2020426 |
[2] |
Qingshan Yang, Xuerong Mao. Stochastic dynamics of SIRS epidemic models with random perturbation. Mathematical Biosciences & Engineering, 2014, 11 (4) : 1003-1025. doi: 10.3934/mbe.2014.11.1003 |
[3] |
John D. Nagy. The Ecology and Evolutionary Biology of Cancer: A Review of Mathematical Models of Necrosis and Tumor Cell Diversity. Mathematical Biosciences & Engineering, 2005, 2 (2) : 381-418. doi: 10.3934/mbe.2005.2.381 |
[4] |
Gong Chen. Strichartz estimates for charge transfer models. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1201-1226. doi: 10.3934/dcds.2017050 |
[5] |
Walter Allegretto, Liqun Cao, Yanping Lin. Multiscale asymptotic expansion for second order parabolic equations with rapidly oscillating coefficients. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 543-576. doi: 10.3934/dcds.2008.20.543 |
[6] |
YunKyong Hyon, James E. Fonseca, Bob Eisenberg, Chun Liu. Energy variational approach to study charge inversion (layering) near charged walls. Discrete and Continuous Dynamical Systems - B, 2012, 17 (8) : 2725-2743. doi: 10.3934/dcdsb.2012.17.2725 |
[7] |
Avner Friedman. A hierarchy of cancer models and their mathematical challenges. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 147-159. doi: 10.3934/dcdsb.2004.4.147 |
[8] |
Per Danzl, Ali Nabi, Jeff Moehlis. Charge-balanced spike timing control for phase models of spiking neurons. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1413-1435. doi: 10.3934/dcds.2010.28.1413 |
[9] |
Nicola Bellomo, Diletta Burini, Nisrine Outada. Multiscale models of Covid-19 with mutations and variants. Networks and Heterogeneous Media, 2022, 17 (3) : 293-310. doi: 10.3934/nhm.2022008 |
[10] |
Timothy Blass, Rafael de la Llave. Perturbation and numerical methods for computing the minimal average energy. Networks and Heterogeneous Media, 2011, 6 (2) : 241-255. doi: 10.3934/nhm.2011.6.241 |
[11] |
Natalia L. Komarova. Spatial stochastic models of cancer: Fitness, migration, invasion. Mathematical Biosciences & Engineering, 2013, 10 (3) : 761-775. doi: 10.3934/mbe.2013.10.761 |
[12] |
Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 483-499. doi: 10.3934/dcdsb.2020213 |
[13] |
Jim M. Cushing. The evolutionary dynamics of a population model with a strong Allee effect. Mathematical Biosciences & Engineering, 2015, 12 (4) : 643-660. doi: 10.3934/mbe.2015.12.643 |
[14] |
Minette Herrera, Aaron Miller, Joel Nishimura. Altruistic aging: The evolutionary dynamics balancing longevity and evolvability. Mathematical Biosciences & Engineering, 2017, 14 (2) : 455-465. doi: 10.3934/mbe.2017028 |
[15] |
Amy Veprauskas, J. M. Cushing. Evolutionary dynamics of a multi-trait semelparous model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 655-676. doi: 10.3934/dcdsb.2016.21.655 |
[16] |
Vincent Giovangigli, Wen-An Yong. Volume viscosity and internal energy relaxation: Symmetrization and Chapman-Enskog expansion. Kinetic and Related Models, 2015, 8 (1) : 79-116. doi: 10.3934/krm.2015.8.79 |
[17] |
Federica Bubba, Benoit Perthame, Daniele Cerroni, Pasquale Ciarletta, Paolo Zunino. A coupled 3D-1D multiscale Keller-Segel model of chemotaxis and its application to cancer invasion. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2053-2086. doi: 10.3934/dcdss.2022044 |
[18] |
Urszula Ledzewicz, Heinz Schättler. Controlling a model for bone marrow dynamics in cancer chemotherapy. Mathematical Biosciences & Engineering, 2004, 1 (1) : 95-110. doi: 10.3934/mbe.2004.1.95 |
[19] |
Shan Jiang, Li Liang, Meiling Sun, Fang Su. Uniform high-order convergence of multiscale finite element computation on a graded recursion for singular perturbation. Electronic Research Archive, 2020, 28 (2) : 935-949. doi: 10.3934/era.2020049 |
[20] |
Carsten Hartmann, Juan C. Latorre, Wei Zhang, Grigorios A. Pavliotis. Addendum to "Optimal control of multiscale systems using reduced-order models". Journal of Computational Dynamics, 2017, 4 (1&2) : 167-167. doi: 10.3934/jcd.2017006 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]