- Previous Article
- MBE Home
- This Issue
-
Next Article
Basic stochastic models for viral infection within a host
Dynamics of stochastic mutation to immunodominance
1. | Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, United States, United States |
2. | Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996 |
References:
[1] |
M. A. Nowak, R. M. May and K. Sigmund, Immune responses against multiple epitopes, J. Theor. Biol., 175 (1995), 325-353.
doi: 10.1006/jtbi.1995.0146. |
[2] |
M. A. Nowak, Immune responses against multiple epitopes: a theory for immunodominance and antigenic variation, Semin. Virol., 7 (1996), 83-92.
doi: 10.1006/smvy.1996.0010. |
[3] |
D. Wodarz, "Killer Cell Dynamics: Mathematical and Computational Approaches to Immunology," Springer, New York, USA, 2007. |
[4] |
L. Adorini, E. Appella, G. Doria and Z. A. Nagy, Mechanisms influencing the immunodominance of T cell determinants, J. Exp. Med., 168 (1988), 2091-2104.
doi: 10.1084/jem.168.6.2091. |
[5] |
A. J. McMichael and R. E. Phillips, Escape of human immunodeficiency virus from immune control, Annu. Rev. Immunol., 15 (1997), 271-296.
doi: 10.1146/annurev.immunol.15.1.271. |
[6] |
P. J. R. Goulder, et al., Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS, Nature Med., 3 (1997), 212-217.
doi: 10.1038/nm0297-212. |
[7] |
P. J. R. Goulder, et al., Patterns of immunodominance in HIV-1-specific cytotoxic T lymphocyte responses in two human histocompatibility leukocyte antigens (HLA)-identical siblings with HLA-A*0201 are influenced by epitope mutation, J. Exp. Med., 185 (1997), 1423-1433.
doi: 10.1084/jem.185.8.1423. |
[8] |
J. W. Yewdell and J. R. Bennink, Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses, Annu. Rev. Immunol., 17 (1999), 51-88.
doi: 10.1146/annurev.immunol.17.1.51. |
[9] |
S. Gupta and R. M. Anderson, Population structure of pathogens: the role of immune selection, Parasitology Today, 15 (1999), 497-501.
doi: 10.1016/S0169-4758(99)01559-8. |
[10] |
C. C. Bergmann, J. D. Altman, D. Hinton and S. A. Stohlman, Inverted immunodominance and impaired cytolytic function of CD8+ T cells during viral persistence in the central nervous system, J. Immunol. 163 (1999), 3379-3387. |
[11] |
W. S. Chen, L. C. Antón, J. R. Bennink and J. W. Yewdell, Dissecting the multifactorial causes of immunodominance in class I-restricted T cell responses to viruses, Immunity, 12 (2000), 83-93.
doi: 10.1016/S1074-7613(00)80161-2. |
[12] |
X. G. Yu, et al., Consistent patterns in the development and immunodominance of human immunodificiency virus type 1 (HIV-1)-specific CD8+ T-cell responses following acute HIV-1 infection, J. Virol., 76 (2002), 8690-8701.
doi: 10.1128/JVI.76.17.8690-8701.2002. |
[13] |
M. A. Brehm, A. K. Pinto, K. A. Daniels, J. P. Schneck, R. M. Welsh and L. K. Selin, T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens, Nature Immunol., 3 (2002), 627-634. |
[14] |
U. Karrer, et al., Memory inflation: continuous accumulation of antiviral CD8+ T cells over time, J. Immunol., 170 (2003), 2022-2029. |
[15] |
E. J. Wherry, J. N. Blattman, K. Murali-Krishna, R. van der Most and R. Ahmed, Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment, J. Virol., 77 (2003), 4911-4927.
doi: 10.1128/JVI.77.8.4911-4927.2003. |
[16] |
P. K. C. Goon, et al., Human T cell lymphotropic virus (HTLV) type-1-specific CD8+ T cells: frequency and immunodominance hierarchy, J. Infect. Dis., 189 (2004), 2294-2298.
doi: 10.1086/420832. |
[17] |
R. Draenert, et al., Constraints on HIV-1 evolution and immunodominance revealed in monozygotic adult twins infected with the same virus, J. Exp. Med., 203 (2006), 529-539.
doi: 10.1084/jem.20052116. |
[18] |
M. A. Nowak, R. M. Anderson, A. R. McLean, T. F. W. Wolfs, J. Goudsmit and R. M. May, Antigenic diversity thresholds and the development of AIDS, Science, 254 (1991), 963-969.
doi: 10.1126/science.1683006. |
[19] |
M. A. Nowak, et al., Antigenic oscillations and shifting immunodominance in HIV-1 infections, Nature, 375 (1995), 606-611.
doi: 10.1038/375606a0. |
[20] |
D. Wodarz and M. A. Nowak, CD8 memory, immunodominance, and antigenic escape, Eur. J. Immunol., 30 (2000), 2704-2712.
doi: 10.1002/1521-4141(200009)30:9<2704::AID-IMMU2704>3.0.CO;2-0. |
[21] |
M. A. Nowak and R. M. May, "Virus Dynamics: Mathematical Principles of Immunology and Virology,'' Oxford University Press, New York, USA, 2000. |
[22] |
C. L. Althaus and R. J. De Boer, Dynamics of immune escape during HIV/SIV infection, PLOS Comput. Biol., 4 (2008), e1000103.
doi: 10.1371/journal.pcbi.1000103. |
[23] |
A. Handel and R. Antia, A simple methematical model helps to explain the immunodominance of CD8 T cells in influenza a virus infections, J. Virol., 82 (2008), 7768-7772.
doi: 10.1128/JVI.00653-08. |
[24] |
M. A. Nowak, R. M. May and R. M. Anderson, The evolutionary dynamics of HIV-1 quasispecies and the development of immunodeficiency disease, AIDS, 4 (1990), 1095-1103.
doi: 10.1097/00002030-199011000-00007. |
[25] |
M. A. Nowak and R. M. May, Coexistence and competition in HIV infections, J. Theor. Biol., 159 (1992), 329-342.
doi: 10.1016/S0022-5193(05)80728-3. |
[26] |
M. A. Nowak and R. M. May, AIDS pathogenesis: mathematical models of HIV and SIV infections, AIDS 7, Suppl., 1 (1993), S3-S18.
doi: 10.1097/00002030-199301001-00002. |
[27] |
R. M. Anderson, Mathematical studies of parasitic infection and immunity, Science, 264 (1994), 1884-1886.
doi: 10.1126/science.8009218. |
[28] |
Y. K. Lin and G. Q. Cai, "Probabilistic Structural Dynamics: Advanced Theory and Applications,'' McGraw-Hill, New York, 1995. |
[29] |
W. Q. Zhu, Z. L. Huang, J. M. Ko and Y. Q. Ni, Optimal feedback control of strongly non-linear systems excited by bounded noise, J. Sound Vib., 274 (2004), 701-724.
doi: 10.1016/S0022-460X(03)00746-6. |
[30] |
Z. L. Huang, W. Q. Zhu, Y. Q. Ni and J. M. Ko, Stochastic averaging of strongly non-linear oscillators under bounded noise excitation, J. Sound Vib., 254 (2002), 245-267.
doi: 10.1006/jsvi.2001.4093. |
show all references
References:
[1] |
M. A. Nowak, R. M. May and K. Sigmund, Immune responses against multiple epitopes, J. Theor. Biol., 175 (1995), 325-353.
doi: 10.1006/jtbi.1995.0146. |
[2] |
M. A. Nowak, Immune responses against multiple epitopes: a theory for immunodominance and antigenic variation, Semin. Virol., 7 (1996), 83-92.
doi: 10.1006/smvy.1996.0010. |
[3] |
D. Wodarz, "Killer Cell Dynamics: Mathematical and Computational Approaches to Immunology," Springer, New York, USA, 2007. |
[4] |
L. Adorini, E. Appella, G. Doria and Z. A. Nagy, Mechanisms influencing the immunodominance of T cell determinants, J. Exp. Med., 168 (1988), 2091-2104.
doi: 10.1084/jem.168.6.2091. |
[5] |
A. J. McMichael and R. E. Phillips, Escape of human immunodeficiency virus from immune control, Annu. Rev. Immunol., 15 (1997), 271-296.
doi: 10.1146/annurev.immunol.15.1.271. |
[6] |
P. J. R. Goulder, et al., Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS, Nature Med., 3 (1997), 212-217.
doi: 10.1038/nm0297-212. |
[7] |
P. J. R. Goulder, et al., Patterns of immunodominance in HIV-1-specific cytotoxic T lymphocyte responses in two human histocompatibility leukocyte antigens (HLA)-identical siblings with HLA-A*0201 are influenced by epitope mutation, J. Exp. Med., 185 (1997), 1423-1433.
doi: 10.1084/jem.185.8.1423. |
[8] |
J. W. Yewdell and J. R. Bennink, Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses, Annu. Rev. Immunol., 17 (1999), 51-88.
doi: 10.1146/annurev.immunol.17.1.51. |
[9] |
S. Gupta and R. M. Anderson, Population structure of pathogens: the role of immune selection, Parasitology Today, 15 (1999), 497-501.
doi: 10.1016/S0169-4758(99)01559-8. |
[10] |
C. C. Bergmann, J. D. Altman, D. Hinton and S. A. Stohlman, Inverted immunodominance and impaired cytolytic function of CD8+ T cells during viral persistence in the central nervous system, J. Immunol. 163 (1999), 3379-3387. |
[11] |
W. S. Chen, L. C. Antón, J. R. Bennink and J. W. Yewdell, Dissecting the multifactorial causes of immunodominance in class I-restricted T cell responses to viruses, Immunity, 12 (2000), 83-93.
doi: 10.1016/S1074-7613(00)80161-2. |
[12] |
X. G. Yu, et al., Consistent patterns in the development and immunodominance of human immunodificiency virus type 1 (HIV-1)-specific CD8+ T-cell responses following acute HIV-1 infection, J. Virol., 76 (2002), 8690-8701.
doi: 10.1128/JVI.76.17.8690-8701.2002. |
[13] |
M. A. Brehm, A. K. Pinto, K. A. Daniels, J. P. Schneck, R. M. Welsh and L. K. Selin, T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens, Nature Immunol., 3 (2002), 627-634. |
[14] |
U. Karrer, et al., Memory inflation: continuous accumulation of antiviral CD8+ T cells over time, J. Immunol., 170 (2003), 2022-2029. |
[15] |
E. J. Wherry, J. N. Blattman, K. Murali-Krishna, R. van der Most and R. Ahmed, Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment, J. Virol., 77 (2003), 4911-4927.
doi: 10.1128/JVI.77.8.4911-4927.2003. |
[16] |
P. K. C. Goon, et al., Human T cell lymphotropic virus (HTLV) type-1-specific CD8+ T cells: frequency and immunodominance hierarchy, J. Infect. Dis., 189 (2004), 2294-2298.
doi: 10.1086/420832. |
[17] |
R. Draenert, et al., Constraints on HIV-1 evolution and immunodominance revealed in monozygotic adult twins infected with the same virus, J. Exp. Med., 203 (2006), 529-539.
doi: 10.1084/jem.20052116. |
[18] |
M. A. Nowak, R. M. Anderson, A. R. McLean, T. F. W. Wolfs, J. Goudsmit and R. M. May, Antigenic diversity thresholds and the development of AIDS, Science, 254 (1991), 963-969.
doi: 10.1126/science.1683006. |
[19] |
M. A. Nowak, et al., Antigenic oscillations and shifting immunodominance in HIV-1 infections, Nature, 375 (1995), 606-611.
doi: 10.1038/375606a0. |
[20] |
D. Wodarz and M. A. Nowak, CD8 memory, immunodominance, and antigenic escape, Eur. J. Immunol., 30 (2000), 2704-2712.
doi: 10.1002/1521-4141(200009)30:9<2704::AID-IMMU2704>3.0.CO;2-0. |
[21] |
M. A. Nowak and R. M. May, "Virus Dynamics: Mathematical Principles of Immunology and Virology,'' Oxford University Press, New York, USA, 2000. |
[22] |
C. L. Althaus and R. J. De Boer, Dynamics of immune escape during HIV/SIV infection, PLOS Comput. Biol., 4 (2008), e1000103.
doi: 10.1371/journal.pcbi.1000103. |
[23] |
A. Handel and R. Antia, A simple methematical model helps to explain the immunodominance of CD8 T cells in influenza a virus infections, J. Virol., 82 (2008), 7768-7772.
doi: 10.1128/JVI.00653-08. |
[24] |
M. A. Nowak, R. M. May and R. M. Anderson, The evolutionary dynamics of HIV-1 quasispecies and the development of immunodeficiency disease, AIDS, 4 (1990), 1095-1103.
doi: 10.1097/00002030-199011000-00007. |
[25] |
M. A. Nowak and R. M. May, Coexistence and competition in HIV infections, J. Theor. Biol., 159 (1992), 329-342.
doi: 10.1016/S0022-5193(05)80728-3. |
[26] |
M. A. Nowak and R. M. May, AIDS pathogenesis: mathematical models of HIV and SIV infections, AIDS 7, Suppl., 1 (1993), S3-S18.
doi: 10.1097/00002030-199301001-00002. |
[27] |
R. M. Anderson, Mathematical studies of parasitic infection and immunity, Science, 264 (1994), 1884-1886.
doi: 10.1126/science.8009218. |
[28] |
Y. K. Lin and G. Q. Cai, "Probabilistic Structural Dynamics: Advanced Theory and Applications,'' McGraw-Hill, New York, 1995. |
[29] |
W. Q. Zhu, Z. L. Huang, J. M. Ko and Y. Q. Ni, Optimal feedback control of strongly non-linear systems excited by bounded noise, J. Sound Vib., 274 (2004), 701-724.
doi: 10.1016/S0022-460X(03)00746-6. |
[30] |
Z. L. Huang, W. Q. Zhu, Y. Q. Ni and J. M. Ko, Stochastic averaging of strongly non-linear oscillators under bounded noise excitation, J. Sound Vib., 254 (2002), 245-267.
doi: 10.1006/jsvi.2001.4093. |
[1] |
Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004 |
[2] |
Michael B. Giles, Kristian Debrabant, Andreas Rössler. Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3881-3903. doi: 10.3934/dcdsb.2018335 |
[3] |
Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683-696. doi: 10.3934/mbe.2006.3.683 |
[4] |
Zhiyan Ding, Qin Li. Constrained Ensemble Langevin Monte Carlo. Foundations of Data Science, 2022, 4 (1) : 37-70. doi: 10.3934/fods.2021034 |
[5] |
Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic and Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291 |
[6] |
Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems and Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81 |
[7] |
Theodore Papamarkou, Alexey Lindo, Eric B. Ford. Geometric adaptive Monte Carlo in random environment. Foundations of Data Science, 2021, 3 (2) : 201-224. doi: 10.3934/fods.2021014 |
[8] |
Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313 |
[9] |
Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 125-136. doi: 10.3934/dcdsb.2005.5.125 |
[10] |
Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks and Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803 |
[11] |
Mazyar Zahedi-Seresht, Gholam-Reza Jahanshahloo, Josef Jablonsky, Sedighe Asghariniya. A new Monte Carlo based procedure for complete ranking efficient units in DEA models. Numerical Algebra, Control and Optimization, 2017, 7 (4) : 403-416. doi: 10.3934/naco.2017025 |
[12] |
Azmy S. Ackleh, Shuhua Hu. Comparison between stochastic and deterministic selection-mutation models. Mathematical Biosciences & Engineering, 2007, 4 (2) : 133-157. doi: 10.3934/mbe.2007.4.133 |
[13] |
Ryoji Sawa. Stochastic stability in the large population and small mutation limits for coordination games. Journal of Dynamics and Games, 2021 doi: 10.3934/jdg.2021015 |
[14] |
Dianmo Li, Zengxiang Gao, Zufei Ma, Baoyu Xie, Zhengjun Wang. Two general models for the simulation of insect population dynamics. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 623-628. doi: 10.3934/dcdsb.2004.4.623 |
[15] |
Péter Koltai. A stochastic approach for computing the domain of attraction without trajectory simulation. Conference Publications, 2011, 2011 (Special) : 854-863. doi: 10.3934/proc.2011.2011.854 |
[16] |
Zhongyi Huang, Peter A. Markowich, Christof Sparber. Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics. Kinetic and Related Models, 2010, 3 (1) : 181-194. doi: 10.3934/krm.2010.3.181 |
[17] |
Filippo Terragni, José M. Vega. Simulation of complex dynamics using POD 'on the fly' and residual estimates. Conference Publications, 2015, 2015 (special) : 1060-1069. doi: 10.3934/proc.2015.1060 |
[18] |
Jonathan Newton, William H. Sandholm. Stochastic dynamics and Edmonds' algorithm. Journal of Dynamics and Games, 2021 doi: 10.3934/jdg.2021029 |
[19] |
Giuseppe Toscani. A kinetic description of mutation processes in bacteria. Kinetic and Related Models, 2013, 6 (4) : 1043-1055. doi: 10.3934/krm.2013.6.1043 |
[20] |
Jianhua Huang, Tianlong Shen, Yuhong Li. Dynamics of stochastic fractional Boussinesq equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2051-2067. doi: 10.3934/dcdsb.2015.20.2051 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]