-
Previous Article
The impact of an imperfect vaccine and pap cytology screening on the transmission of human papillomavirus and occurrence of associated cervical dysplasia and cancer
- MBE Home
- This Issue
-
Next Article
Saturated treatments and measles resurgence episodes in South Africa: A possible linkage
Modelling seasonal HFMD with the recessive infection in Shandong, China
1. | Department of Mathematics, North University of China, Taiyuan, Shanxi 030051, China, China, China |
2. | Department of Mathematics, North University of China, School of Mechatronic Engineering, North University of China, Taiyuan, Shanxi 030051, China |
References:
[1] |
O. N. Bjornstad, B. F. Finkenstadt and B. T. Grenfell, Dynamics of measles epidemics: Estimating scaling of transmission rates using a time series SIR model, Ecol. Monogr., 72 (2002), 169-184. |
[2] |
N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436.
doi: 10.1007/s00285-006-0015-0. |
[3] |
N. Bacaër, Approximation of the basic reproduction number $R_{0}$ for vector-borne diseases with a periodic vector population, Bull. Math. Biol., 69 (2007), 1067-1091.
doi: 10.1007/s11538-006-9166-9. |
[4] |
CDC, "Hand, Foot, and Mouth Disease (HFMD)$-$About Hand, Foot, and Mouth (HFMD),", , ().
|
[5] |
CDC, Notes from the Field: Severe Hand, Foot, and Mouth Disease Associated with Coxsackievirus A6-Alabama, Connecticut, California, and Nevada, November 2011-February 2012,, , ().
|
[6] |
S. F. Dowell, Seasonal variation in host susceptibility and cycles of certain infectious diseases, Emerg. Infect. Dis., 7 (2001), 369-374. |
[7] |
J. Dushoff, J. B. Poltkin, S. A. Levin and D. J. D. Earn, Dynamical resonance can account for seasonality of influenza epidemics, Proc. Natl. Acad. Sci., 101 (2004), 16915-16916.
doi: 10.1073/pnas.0407293101. |
[8] |
Z. Grossman, Oscillatory phenomena in a model of infectious diseases, Theory. Pop. Biol., 18 (1980), 204-243.
doi: 10.1016/0040-5809(80)90050-7. |
[9] |
J. L. Liu, Threshold dynamics for a HFMD epidemic model with periodic transmission rate, Nonlinear. Dyn., 64 (2011), 89-95.
doi: 10.1007/s11071-010-9848-6. |
[10] |
M. Y. Liu, W. Liu, J. Luo, Y. Liu, Y. Zhu, H. Berman and J. Wu, Characterization of an Outbreak of Hand, Foot, and Mouth Disease in Nanchang, China in 2010, PLoS ONE., 6 (2011), e25287.
doi: 10.1371/journal.pone.0025287. |
[11] |
W. London and J. A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps.i.seasonal variation in contact rates, Am. J. Epidemiol., 98 (1973), 453-468. |
[12] |
J. Ma and Z. Ma, Epidemic threshold conditions for seasonally forced SEIR models, Math. Biosci. Eng., 3 (2006), 161-172.
doi: 10.3934/mbe.2006.3.161. |
[13] |
I. A. Moneim and D. Greenhalgh, Use of a periodic vaccination strategy to control the spread of epidemics with seasonally varying contact rate, Math. Biosci. Eng., 2 (2005), 591-611.
doi: 10.3934/mbe.2005.2.591. |
[14] |
Z. Ma, Y. Zhou, W. Wang and Z. Jin, "Mathematical Modeling and Studying of Dynamic Models of Infectious Disease," Science Press, London, 2004. |
[15] |
L. Perko, "Differential Equations and Dynamical System," Springer-Verlag, New York, 2000. |
[16] |
I. Schwartz, Small amplitude, long periodic out breaks in seasonally driven epidemics, J. Math. Biol., 30 (1992), 473-491.
doi: 10.1007/BF00160532. |
[17] |
I. Schwartz and H. Smith, Infinite subharmonic bifurcation in an SIER epidemic model, J. Math. Biol., 18 (1983), 233-253.
doi: 10.1007/BF00276090. |
[18] |
, Shandong Statistical Information,, , ().
|
[19] |
F. C. S. Tiing and J. Labadin, A simple deterministic model for the spread of hand, foot and mouth disease (HFMD) in Sarawak, in "Second Asia International Conference on Modelling and Simulation," Conference Publications, (2008), 947-952.
doi: 10.1109/AMS.2008.139. |
[20] |
M. Urashima, N. Shindo and N. Okable, Seasonal model of herpangina and hand-foot-mouth disease to simulate annual fluctuations in urban warming in Tokyo, Jpn. J. Infect. Dis., 56 (2003), 48-53. |
[21] |
WHO, Emerging disease surveillance and response,, , ().
|
[22] |
D. Wu, C. Ke, W. Li, M. Corina, J. Yan, C. Ma, H. Zen and J.Su, A large outbreak of hand, foot, and mouth disease caused by EV71 and CAV16 in Guangdong, China, 2009, Arch. Virol., 156 (2011), 945-953. |
[23] |
A. Weber, M. Weber and P. Milligan, Modeling epidemics caused by respiratory syncytial virus (RSV), Math. Biosci., 172 (2001), 95-113.
doi: 10.1016/S0025-5564(01)00066-9. |
[24] |
L. J.White, J. N.Mandl, M. G. Gomes, A. T. Bodley-Tickell, P. A.Cane, P. Perez-Brena, J. C. Aguilar, M. M. Siqueira, S. A. Portes, S. M. Straliotto, M. Waris, D. J. Nokes and G. F. Medley, Understanding the transmissiondynamics of respiratorysyncytialvirus using multiple time series and nested models, Math. Biosci., 209 (2007), 222-239.
doi: 10.1016/j.mbs.2006.08.018. |
[25] |
W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Biol. Dyn., 3 (2008), 699-717.
doi: 10.1007/s10884-008-9111-8. |
[26] |
Q. Zhu, Y. T. Hao, J. Q. Ma , S. C. Yu and Y. Wang, Surveillance of Hand, Foot, and Mouth Disease in Mainland China (2008-2009), Biomed. Environ. Sci., 4 (2011), 349-356. |
[27] |
Y. Zhang, X. J. Tan, H. Y. Wang, D. M. Yan, S. L. Zhu, D. Y. Wang, F. Ji, X. J. Wang, Y. J. Gao, L. Chen, H. Q. An, D. X. Li, S. W. Wang, A. Q. Xu, Z. J. Wang and W. B. Xu, An outbreak of hand, foot, and mouth disease associated with subgenotype C4 of human enterovirus 71 in Shandong, China, J. Clin. Virol., 44 (2009), 262-267. |
[28] |
J. Zhang, Z. Jin, G.-Q. Sun, X.-D. Sun and S. Ruan, Modeling seasonal rabies epidemics in China, Bull. Math. Biol., 74 (2012), 1226-1251.
doi: 10.1007/s11538-012-9720-6. |
[29] |
F. Zhang and X. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496-516.
doi: 10.1016/j.jmaa.2006.01.085. |
show all references
References:
[1] |
O. N. Bjornstad, B. F. Finkenstadt and B. T. Grenfell, Dynamics of measles epidemics: Estimating scaling of transmission rates using a time series SIR model, Ecol. Monogr., 72 (2002), 169-184. |
[2] |
N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436.
doi: 10.1007/s00285-006-0015-0. |
[3] |
N. Bacaër, Approximation of the basic reproduction number $R_{0}$ for vector-borne diseases with a periodic vector population, Bull. Math. Biol., 69 (2007), 1067-1091.
doi: 10.1007/s11538-006-9166-9. |
[4] |
CDC, "Hand, Foot, and Mouth Disease (HFMD)$-$About Hand, Foot, and Mouth (HFMD),", , ().
|
[5] |
CDC, Notes from the Field: Severe Hand, Foot, and Mouth Disease Associated with Coxsackievirus A6-Alabama, Connecticut, California, and Nevada, November 2011-February 2012,, , ().
|
[6] |
S. F. Dowell, Seasonal variation in host susceptibility and cycles of certain infectious diseases, Emerg. Infect. Dis., 7 (2001), 369-374. |
[7] |
J. Dushoff, J. B. Poltkin, S. A. Levin and D. J. D. Earn, Dynamical resonance can account for seasonality of influenza epidemics, Proc. Natl. Acad. Sci., 101 (2004), 16915-16916.
doi: 10.1073/pnas.0407293101. |
[8] |
Z. Grossman, Oscillatory phenomena in a model of infectious diseases, Theory. Pop. Biol., 18 (1980), 204-243.
doi: 10.1016/0040-5809(80)90050-7. |
[9] |
J. L. Liu, Threshold dynamics for a HFMD epidemic model with periodic transmission rate, Nonlinear. Dyn., 64 (2011), 89-95.
doi: 10.1007/s11071-010-9848-6. |
[10] |
M. Y. Liu, W. Liu, J. Luo, Y. Liu, Y. Zhu, H. Berman and J. Wu, Characterization of an Outbreak of Hand, Foot, and Mouth Disease in Nanchang, China in 2010, PLoS ONE., 6 (2011), e25287.
doi: 10.1371/journal.pone.0025287. |
[11] |
W. London and J. A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps.i.seasonal variation in contact rates, Am. J. Epidemiol., 98 (1973), 453-468. |
[12] |
J. Ma and Z. Ma, Epidemic threshold conditions for seasonally forced SEIR models, Math. Biosci. Eng., 3 (2006), 161-172.
doi: 10.3934/mbe.2006.3.161. |
[13] |
I. A. Moneim and D. Greenhalgh, Use of a periodic vaccination strategy to control the spread of epidemics with seasonally varying contact rate, Math. Biosci. Eng., 2 (2005), 591-611.
doi: 10.3934/mbe.2005.2.591. |
[14] |
Z. Ma, Y. Zhou, W. Wang and Z. Jin, "Mathematical Modeling and Studying of Dynamic Models of Infectious Disease," Science Press, London, 2004. |
[15] |
L. Perko, "Differential Equations and Dynamical System," Springer-Verlag, New York, 2000. |
[16] |
I. Schwartz, Small amplitude, long periodic out breaks in seasonally driven epidemics, J. Math. Biol., 30 (1992), 473-491.
doi: 10.1007/BF00160532. |
[17] |
I. Schwartz and H. Smith, Infinite subharmonic bifurcation in an SIER epidemic model, J. Math. Biol., 18 (1983), 233-253.
doi: 10.1007/BF00276090. |
[18] |
, Shandong Statistical Information,, , ().
|
[19] |
F. C. S. Tiing and J. Labadin, A simple deterministic model for the spread of hand, foot and mouth disease (HFMD) in Sarawak, in "Second Asia International Conference on Modelling and Simulation," Conference Publications, (2008), 947-952.
doi: 10.1109/AMS.2008.139. |
[20] |
M. Urashima, N. Shindo and N. Okable, Seasonal model of herpangina and hand-foot-mouth disease to simulate annual fluctuations in urban warming in Tokyo, Jpn. J. Infect. Dis., 56 (2003), 48-53. |
[21] |
WHO, Emerging disease surveillance and response,, , ().
|
[22] |
D. Wu, C. Ke, W. Li, M. Corina, J. Yan, C. Ma, H. Zen and J.Su, A large outbreak of hand, foot, and mouth disease caused by EV71 and CAV16 in Guangdong, China, 2009, Arch. Virol., 156 (2011), 945-953. |
[23] |
A. Weber, M. Weber and P. Milligan, Modeling epidemics caused by respiratory syncytial virus (RSV), Math. Biosci., 172 (2001), 95-113.
doi: 10.1016/S0025-5564(01)00066-9. |
[24] |
L. J.White, J. N.Mandl, M. G. Gomes, A. T. Bodley-Tickell, P. A.Cane, P. Perez-Brena, J. C. Aguilar, M. M. Siqueira, S. A. Portes, S. M. Straliotto, M. Waris, D. J. Nokes and G. F. Medley, Understanding the transmissiondynamics of respiratorysyncytialvirus using multiple time series and nested models, Math. Biosci., 209 (2007), 222-239.
doi: 10.1016/j.mbs.2006.08.018. |
[25] |
W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Biol. Dyn., 3 (2008), 699-717.
doi: 10.1007/s10884-008-9111-8. |
[26] |
Q. Zhu, Y. T. Hao, J. Q. Ma , S. C. Yu and Y. Wang, Surveillance of Hand, Foot, and Mouth Disease in Mainland China (2008-2009), Biomed. Environ. Sci., 4 (2011), 349-356. |
[27] |
Y. Zhang, X. J. Tan, H. Y. Wang, D. M. Yan, S. L. Zhu, D. Y. Wang, F. Ji, X. J. Wang, Y. J. Gao, L. Chen, H. Q. An, D. X. Li, S. W. Wang, A. Q. Xu, Z. J. Wang and W. B. Xu, An outbreak of hand, foot, and mouth disease associated with subgenotype C4 of human enterovirus 71 in Shandong, China, J. Clin. Virol., 44 (2009), 262-267. |
[28] |
J. Zhang, Z. Jin, G.-Q. Sun, X.-D. Sun and S. Ruan, Modeling seasonal rabies epidemics in China, Bull. Math. Biol., 74 (2012), 1226-1251.
doi: 10.1007/s11538-012-9720-6. |
[29] |
F. Zhang and X. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496-516.
doi: 10.1016/j.jmaa.2006.01.085. |
[1] |
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37 |
[2] |
Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166 |
[3] |
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595 |
[4] |
Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170 |
[5] |
Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455 |
[6] |
Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reaction-diffusion epidemic model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3005-3017. doi: 10.3934/dcdsb.2021170 |
[7] |
Scott W. Hansen. Controllability of a basic cochlea model. Evolution Equations and Control Theory, 2016, 5 (4) : 475-487. doi: 10.3934/eect.2016015 |
[8] |
Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239 |
[9] |
Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 585-606. doi: 10.3934/dcds.2019024 |
[10] |
Sabri Bensid, Jesús Ildefonso Díaz. On the exact number of monotone solutions of a simplified Budyko climate model and their different stability. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1033-1047. doi: 10.3934/dcdsb.2019005 |
[11] |
Leonid A. Bunimovich. Dynamical systems and operations research: A basic model. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 209-218. doi: 10.3934/dcdsb.2001.1.209 |
[12] |
Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457-470. doi: 10.3934/mbe.2007.4.457 |
[13] |
Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565 |
[14] |
Daniel Vasiliu, Jianjun Paul Tian. Periodic solutions of a model for tumor virotherapy. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1587-1597. doi: 10.3934/dcdss.2011.4.1587 |
[15] |
Dongfeng Zhang, Junxiang Xu. On the reducibility of analytic quasi-periodic systems with Liouvillean basic frequencies. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1417-1445. doi: 10.3934/cpaa.2022024 |
[16] |
Hao Kang, Qimin Huang, Shigui Ruan. Periodic solutions of an age-structured epidemic model with periodic infection rate. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4955-4972. doi: 10.3934/cpaa.2020220 |
[17] |
Tommaso Leonori, Ireneo Peral, Ana Primo, Fernando Soria. Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 6031-6068. doi: 10.3934/dcds.2015.35.6031 |
[18] |
John Cleveland. Basic stage structure measure valued evolutionary game model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 291-310. doi: 10.3934/mbe.2015.12.291 |
[19] |
Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304 |
[20] |
Xiao-Wen Chang, Ren-Cang Li. Multiplicative perturbation analysis for QR factorizations. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 301-316. doi: 10.3934/naco.2011.1.301 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]