• Previous Article
    Mitigation of epidemics in contact networks through optimal contact adaptation
  • MBE Home
  • This Issue
  • Next Article
    The impact of an imperfect vaccine and pap cytology screening on the transmission of human papillomavirus and occurrence of associated cervical dysplasia and cancer
2013, 10(4): 1207-1226. doi: 10.3934/mbe.2013.10.1207

Graph-theoretic conditions for zero-eigenvalue Turing instability in general chemical reaction networks

1. 

Department of Mathematical Sciences, Northern Illinois University, Dekalb, IL 60115, United States

2. 

Department of Mathematics and Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706

Received  July 2012 Revised  March 2013 Published  June 2013

We describe a necessary condition for zero-eigenvalue Turing instability, i.e., Turing instability arising from a real eigenvalue changing sign from negative to positive, for general chemical reaction networks modeled with mass-action kinetics. The reaction mechanisms are represented by the species-reaction graph (SR graph), which is a bipartite graph with different nodes representing species and reactions. If the SR graph satisfies certain conditions, similar to the conditions for ruling out multiple equilibria in spatially homogeneous differential equations systems, then the corresponding mass-action reaction-diffusion system cannot exhibit zero-eigenvalue Turing instability for any parameter values. On the other hand, if the graph-theoretic condition for ruling out zero-eigenvalue Turing instability is not satisfied, then the corresponding model may display zero-eigenvalue Turing instability for some parameter values. The technique is illustrated with a model of a bifunctional enzyme.
Citation: Maya Mincheva, Gheorghe Craciun. Graph-theoretic conditions for zero-eigenvalue Turing instability in general chemical reaction networks. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1207-1226. doi: 10.3934/mbe.2013.10.1207
References:
[1]

M. Banaji and G. Craciun, Graph-theoretic approaches to injectivity and multiple equilibria in systems of interacting elements, Comm. in Math. Sciences, 7 (2009), 867-900.

[2]

M. Banaji and G. Craciun, Graph theoretic approaches to injectivity in general chemical reaction systems, Adv. in Appl. Math., 44 (2010), 168-184. doi: 10.1016/j.aam.2009.07.003.

[3]

E. D. Conway, Diffusion and predator-prey interaction: Pattern in closed systems, Partial differential equations and dynamical systems, 85-133, Res. Notes in Math., 101, Pitman, Boston, MA, 1984.

[4]

G. Craciun, "Systems of Nonlinear Equations Deriving from Complex Chemical Reaction Networks," Ph.D thesis, Ohio State University, 2002.

[5]

G. Craciun and M. Feinberg, Multiple equilibria in complex chemical reaction networks: I. The injectivity property, SIAM J. Appl. Math., 65 (2005), 1526-1546. doi: 10.1137/S0036139904440278.

[6]

G. Craciun and M. Feinberg, Multiple equilibria in complex chemical reaction networks: II. The Species-Reaction graph, SIAM J. Appl. Math., 66 (2006), 1321-1338. doi: 10.1137/050634177.

[7]

G. Craciun, Y. Tang and M. Feinberg, Understanding bistability in complex enzyme-driven reaction networks, PNAS, 103 (2006), 8697-8702. doi: 10.1073/pnas.0602767103.

[8]

P. Donnell, M. Banaji and S. Baigent, Stability in generic mitochondrial models, J. Math. Chem., 46 (2009), 322-339. doi: 10.1007/s10910-008-9464-6.

[9]

M. Feinberg, Complex balancing in general kinetic systems, Arch. Rational Mech. Anal., 49 (1972) 187-194.

[10]

M. Feinberg, "Lectures on Chemical Reaction Networks," Written Version of Lectures Given at the Mathematical Research Center, University of Wisconsin, Madison, WI, 1979. Available at http://www.chbmeng.ohio-state.edu/~feinberg/LecturesOnReactionNetworks.

[11]

M. Feinberg, Existence and uniqueness of steady states for a class of chemical reaction networks, Arch. Rational Mech. Anal., 132 (1995), 311-370. doi: 10.1007/BF00375614.

[12]

F. R. Gantmakher, "Applications of the Theory of Matrices," Interscience, New York, 1960. doi: 10.1063/1.3062774.

[13]

B. N. Goldstein and A. N. Ivanova, Hormonal regulation of 6-phosphofructo-2-kinase fructose-2.6-bisphosphatase: Kinetic models, FEBS Lett., 217 (1987), 212-215. doi: 10.1016/0014-5793(87)80665-8.

[14]

B. N. Goldstein and A. A. Maevsky, Critical switch of the metabolic fluxes by phosphofructo-2-kinase: Fructose-2, 6-bisphosphatase, FEBS Lett., 532 (2002), 295-299. doi: 10.1016/S0014-5793(02)03639-6.

[15]

F. Horn and R. Jackson, General mass action kinetics, Arch. Rational Mech. Anal., 47 (1972), 81-116.

[16]

P. Lancaster and M. Tismenetsky, "The Theory of Matrices," Academic Press, Orlando, 1985. doi: 10.5802/aif.1029.

[17]

M. Mincheva and G. Craciun, Multigraph conditions for multistability, oscillations and pattern formation in biochemical reaction networks, Proc. IEEE, 96 (2008), 1281-1291. doi: 10.1109/JPROC.2008.925474.

[18]

M. Mincheva and M. R. Roussel, Graph-theoretic methods for the analysis of chemical and chemical networks I. Multistability and oscillations in mass-action kinetics models, J. Math. Biol., 55 (2007), 61-86. doi: 10.1007/s00285-007-0099-1.

[19]

M. Mincheva and M. R. Roussel, A graph-theoretic approach for detecting Turing bifurcations, J. Chem. Phys., 125 (2006), 204102.

[20]

J. D. Murray, "Mathematical Biology," 2nd ed., Springer-Verlag, New York, 1993. doi: 10.1007/b98869.

[21]

R. A. Satnoianu, M. Menzinger and P. K. Maini, Turing instabilities in general systems, J. Math. Biol., 41 (2000), 493-512. doi: 10.1007/s002850000056.

[22]

R. A. Satnoianu and P. van den Driessche, Some remarks on matrix stability with application to Turing instability, Lin. Alg. Appl., 398 (2005), 69-74. doi: 10.1016/j.laa.2004.04.003.

[23]

G. Shinar and M. Feinberg, Concordant chemical reaction networks, Math. Biosci., 240 (2012), 92-113. doi: 10.1016/j.mbs.2012.05.004.

[24]

E. de Silva and M. P. H. Stumpf, Complex networks and simple models in biology, J. R. Soc. Interface, 2 (2005), 419-430.

[25]

R. Thomas, D. Thieffry and M. Kaufman, Dynamical behaviour of biological regulatory networks, Bull. Math. Biol., 57 (1995), 247-276.

[26]

A. Turing, The chemical basis of morphogenesis, Phil. Trans. R Soc. London B, 237 (1952), 37-72.

[27]

A. Volpert and A. Ivanova, "Mathematical Modeling," (Russian), Nauka, Moscow, 1987, 57-102.

[28]

L. Wang and M. Y. Li, Diffusion-driven instability in reaction-diffusion systems, J. Math. Anal. Appl., 254 (2001), 138-153. doi: 10.1006/jmaa.2000.7220.

[29]

C. Wiuf and E. Feliu, A unified framework for preclusion of multiple steady states in networks of interacting species, arXiv:1202.3621, (2012).

show all references

References:
[1]

M. Banaji and G. Craciun, Graph-theoretic approaches to injectivity and multiple equilibria in systems of interacting elements, Comm. in Math. Sciences, 7 (2009), 867-900.

[2]

M. Banaji and G. Craciun, Graph theoretic approaches to injectivity in general chemical reaction systems, Adv. in Appl. Math., 44 (2010), 168-184. doi: 10.1016/j.aam.2009.07.003.

[3]

E. D. Conway, Diffusion and predator-prey interaction: Pattern in closed systems, Partial differential equations and dynamical systems, 85-133, Res. Notes in Math., 101, Pitman, Boston, MA, 1984.

[4]

G. Craciun, "Systems of Nonlinear Equations Deriving from Complex Chemical Reaction Networks," Ph.D thesis, Ohio State University, 2002.

[5]

G. Craciun and M. Feinberg, Multiple equilibria in complex chemical reaction networks: I. The injectivity property, SIAM J. Appl. Math., 65 (2005), 1526-1546. doi: 10.1137/S0036139904440278.

[6]

G. Craciun and M. Feinberg, Multiple equilibria in complex chemical reaction networks: II. The Species-Reaction graph, SIAM J. Appl. Math., 66 (2006), 1321-1338. doi: 10.1137/050634177.

[7]

G. Craciun, Y. Tang and M. Feinberg, Understanding bistability in complex enzyme-driven reaction networks, PNAS, 103 (2006), 8697-8702. doi: 10.1073/pnas.0602767103.

[8]

P. Donnell, M. Banaji and S. Baigent, Stability in generic mitochondrial models, J. Math. Chem., 46 (2009), 322-339. doi: 10.1007/s10910-008-9464-6.

[9]

M. Feinberg, Complex balancing in general kinetic systems, Arch. Rational Mech. Anal., 49 (1972) 187-194.

[10]

M. Feinberg, "Lectures on Chemical Reaction Networks," Written Version of Lectures Given at the Mathematical Research Center, University of Wisconsin, Madison, WI, 1979. Available at http://www.chbmeng.ohio-state.edu/~feinberg/LecturesOnReactionNetworks.

[11]

M. Feinberg, Existence and uniqueness of steady states for a class of chemical reaction networks, Arch. Rational Mech. Anal., 132 (1995), 311-370. doi: 10.1007/BF00375614.

[12]

F. R. Gantmakher, "Applications of the Theory of Matrices," Interscience, New York, 1960. doi: 10.1063/1.3062774.

[13]

B. N. Goldstein and A. N. Ivanova, Hormonal regulation of 6-phosphofructo-2-kinase fructose-2.6-bisphosphatase: Kinetic models, FEBS Lett., 217 (1987), 212-215. doi: 10.1016/0014-5793(87)80665-8.

[14]

B. N. Goldstein and A. A. Maevsky, Critical switch of the metabolic fluxes by phosphofructo-2-kinase: Fructose-2, 6-bisphosphatase, FEBS Lett., 532 (2002), 295-299. doi: 10.1016/S0014-5793(02)03639-6.

[15]

F. Horn and R. Jackson, General mass action kinetics, Arch. Rational Mech. Anal., 47 (1972), 81-116.

[16]

P. Lancaster and M. Tismenetsky, "The Theory of Matrices," Academic Press, Orlando, 1985. doi: 10.5802/aif.1029.

[17]

M. Mincheva and G. Craciun, Multigraph conditions for multistability, oscillations and pattern formation in biochemical reaction networks, Proc. IEEE, 96 (2008), 1281-1291. doi: 10.1109/JPROC.2008.925474.

[18]

M. Mincheva and M. R. Roussel, Graph-theoretic methods for the analysis of chemical and chemical networks I. Multistability and oscillations in mass-action kinetics models, J. Math. Biol., 55 (2007), 61-86. doi: 10.1007/s00285-007-0099-1.

[19]

M. Mincheva and M. R. Roussel, A graph-theoretic approach for detecting Turing bifurcations, J. Chem. Phys., 125 (2006), 204102.

[20]

J. D. Murray, "Mathematical Biology," 2nd ed., Springer-Verlag, New York, 1993. doi: 10.1007/b98869.

[21]

R. A. Satnoianu, M. Menzinger and P. K. Maini, Turing instabilities in general systems, J. Math. Biol., 41 (2000), 493-512. doi: 10.1007/s002850000056.

[22]

R. A. Satnoianu and P. van den Driessche, Some remarks on matrix stability with application to Turing instability, Lin. Alg. Appl., 398 (2005), 69-74. doi: 10.1016/j.laa.2004.04.003.

[23]

G. Shinar and M. Feinberg, Concordant chemical reaction networks, Math. Biosci., 240 (2012), 92-113. doi: 10.1016/j.mbs.2012.05.004.

[24]

E. de Silva and M. P. H. Stumpf, Complex networks and simple models in biology, J. R. Soc. Interface, 2 (2005), 419-430.

[25]

R. Thomas, D. Thieffry and M. Kaufman, Dynamical behaviour of biological regulatory networks, Bull. Math. Biol., 57 (1995), 247-276.

[26]

A. Turing, The chemical basis of morphogenesis, Phil. Trans. R Soc. London B, 237 (1952), 37-72.

[27]

A. Volpert and A. Ivanova, "Mathematical Modeling," (Russian), Nauka, Moscow, 1987, 57-102.

[28]

L. Wang and M. Y. Li, Diffusion-driven instability in reaction-diffusion systems, J. Math. Anal. Appl., 254 (2001), 138-153. doi: 10.1006/jmaa.2000.7220.

[29]

C. Wiuf and E. Feliu, A unified framework for preclusion of multiple steady states in networks of interacting species, arXiv:1202.3621, (2012).

[1]

Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1163-1178. doi: 10.3934/dcdsb.2021085

[2]

Klemens Fellner, Wolfang Prager, Bao Q. Tang. The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks. Kinetic and Related Models, 2017, 10 (4) : 1055-1087. doi: 10.3934/krm.2017042

[3]

Masaharu Taniguchi. Instability of planar traveling waves in bistable reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 21-44. doi: 10.3934/dcdsb.2003.3.21

[4]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[5]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[6]

Patrick De Kepper, István Szalai. An effective design method to produce stationary chemical reaction-diffusion patterns. Communications on Pure and Applied Analysis, 2012, 11 (1) : 189-207. doi: 10.3934/cpaa.2012.11.189

[7]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic and Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

[8]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[9]

Shin-Ichiro Ei, Kota Ikeda, Eiji Yanagida. Instability of multi-spot patterns in shadow systems of reaction-diffusion equations. Communications on Pure and Applied Analysis, 2015, 14 (2) : 717-736. doi: 10.3934/cpaa.2015.14.717

[10]

Toshi Ogawa. Degenerate Hopf instability in oscillatory reaction-diffusion equations. Conference Publications, 2007, 2007 (Special) : 784-793. doi: 10.3934/proc.2007.2007.784

[11]

B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3787-3797. doi: 10.3934/dcdsb.2018077

[12]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure and Applied Analysis, 2021, 20 (2) : 623-650. doi: 10.3934/cpaa.2020283

[13]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[14]

Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304

[15]

A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure and Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65

[16]

Dieter Bothe, Michel Pierre. The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 49-59. doi: 10.3934/dcdss.2012.5.49

[17]

Qi An, Weihua Jiang. Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 487-510. doi: 10.3934/dcdsb.2018183

[18]

Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295

[19]

Shuichi Jimbo, Yoshihisa Morita. Asymptotic behavior of entire solutions to reaction-diffusion equations in an infinite star graph. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4013-4039. doi: 10.3934/dcds.2021026

[20]

Dieter Bothe, Petra Wittbold. Abstract reaction-diffusion systems with $m$-completely accretive diffusion operators and measurable reaction rates. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2239-2260. doi: 10.3934/cpaa.2012.11.2239

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]