Citation: |
[1] |
A. S. Ackleh, B. G. Fitzpatrick, S. Scribner, J. J. Thibodeaux and N. Simonsen, Ecosystem modeling of college drinking: Parameter estimation and comparing models to data, Mathematical and Computer Modelling, 50 (2009), 481-997. |
[2] |
R. P. Agarwal, D. Franco and D. ORegan, Singular boundary value problems for first and second order impulsive differential equations, Aequationes Mathematicae, 69 (2005), 83-96. |
[3] |
E. Aguirre, T. Smith, J. Stancil and N. Davidenko, Differential equation models of neoadjuvant chemotherapeutic treatment strategies for stage III breast cancer, Biometrics Unit Technical Report BU-1522-M, Cornell University, 1999. Available from: http://mtbi.asu.edu/. |
[4] |
L. Almada, E. Camacho, R. Rodriguez, M. Thompson and L. Voss, Deterministic and small-world network models of college drinking patterns, 2006. Available from: http://www.public.asu.edu/ etcamach/AMSSI/reports/alcohol2006.pdf. |
[5] |
D. Bainov and P. Simeonov, "Systems with Impulsive Effect: Stability, Theory and Applications,'' Ellis Horwood, Chichester, 1989. |
[6] |
D. Bainov and P. Simeonov, "Theory of Impulsive Differential Equations: Periodic Solutions and Applications,'' Longman, Harlow, 1993. |
[7] |
F. Brauer and C. Castillo-Chavez, "Mathematical Models in Population Biology and Epidemiology,'' Springer, New York, 2012. |
[8] |
N. F. Britton, "Essential Mathematical Biology,'' Springer-Verlag, 2003. |
[9] |
B. Brogliato, "Nonsmooth Mechanics,'' $2^{nd}$ edition, Springer, Berlin, 1999. |
[10] |
R. T. Bupp, D. S. Bernstein, V. S. Chellaboina and W. M. Haddad, Resetting virtual absorbers for vibration control, Journal of Vibration and Control, 6 (2000), 61-83. |
[11] |
E. T. Camacho, "Mathematical Models of Retinal Dynamics," Ph.D. thesis, Center for Applied Mathematics, Cornell University, Ithaca, NY, 2003. |
[12] |
E. T. Camacho, The development and interaction of terrorist and fanatic groups, Communications in Nonlinear Science and Numerical Simulation, 18 (2013), 3086-3097. |
[13] |
E. C. Chang and C. Yap., Competitive online scheduling with level of service, Journal of Scheduling, 6 (2003), 251-267. |
[14] |
N. P. Chau, Destabilising effect of period harvest on population dynamics, Ecological Modelling, 127 (2000), 1-9. |
[15] |
G. Chowell and H. Nishiura, Quantifying the transmission potential of pandemic influenza, Physics of Life Reviews, 5 (2008), 50-77.doi: 10.1016/j.plrev.2007.12.001. |
[16] |
M. Chrobak, L. Epstein, J. Noga, J. Sgall, R. van Stee, T. Tich\'y and N. Vakhania, Preemptive scheduling in overloaded systems, Journal of Computer and System Sciences, 2380 (2003), 183-197. |
[17] |
F. Dercole, A. Gragnani and S. Rinaldi, Bifurcation analysis of piecewise smooth ecological models, Theoretical Population Biology, 72 (2007), 197-213. |
[18] |
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous population, Journal of Mathematical Biology, 28 (1990), 365-382. |
[19] |
A. d'Onofrio, On pulse vaccination strategy in the SIR epidemic model with vertical transmission, Applied Mathematics Letters, 18 (2005), 729-732. |
[20] |
D. B. Forger and D. Paydarfar, Starting, stopping, and resetting biological oscillators: In search of optimal perturbations, Journal of Theoretical Biology, 230 (2004), 521-532. |
[21] |
S. Gao, L. Chen, J. J. Nieto and A. Torres, Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine, 24 (2006), 6037-6045. |
[22] |
S. Gao, Z. Teng, J. J. Nieto and A. Torres, Analysis of an SIR epidemic model with pulse vaccination and distributed time delay, Journal of Biomedicine and Biotechnology, 2007, Article ID 64870, 10 pp.doi: 10.1155/2007/64870. |
[23] |
B. González, E. Huerta-Sánchez, A. Ortiz-Nieves, T. Vázquez-Álvarez and C. Kribs-Zaleta, Am I too fat? Bulimia as an epidemic, Journal of Mathematical Psychology, 47 (2003), 515-526.doi: 10.1016/j.jmp.2003.08.002. |
[24] |
V. Křivan, Optimal foraging and predator-prey dynamics, Theoretical Population Biology, 49 (1996), 265-290. |
[25] |
A. R. Ives, K. Gross and V. A. A. Jansen, Periodic mortality events in predator-prey systems, Ecology, 81 (2000), 3330-3340. |
[26] |
A. Lakmeche and O. Arino, Nonlinear mathematical model of pulsed therapy of heterogeneous tumors, Nonlinear Analysis: Real World Applications, 2 (2001), 455-465. |
[27] |
V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, "Theory of Impulsive Differential Equations," World Scientific, Singapore, 1989. |
[28] |
W. Li and H. Huo, Global attractivity of positive periodic solutions for an impulsive delay periodic model of respiratory dynamics, Journal of Computational and Applied Mathematics, 174 (2005), 227-238. |
[29] |
J. D. Logan and W. Wolesensky, Accounting for temperature in predator functional responses, Natural Resource Modeling, 20 (2007), 549-574. |
[30] |
R. M. Lopez, B. R. Morin and S. K. Suslov, On logistic models with time-dependent coefficients and some of their applications, arXiv:1008.2534. |
[31] |
L. Lu, S. Chu, S. Yeh and C. Peng, Modeling and experimental verification of a variable-stiffness isolation system using a leverage mechanism, Journal of Vibration and Control, 17 (2011), 1869-1885. |
[32] |
S. Maggi and S. Rinaldi, A second-order impact model for forest fire regimes, Theoretical Population Biology, 70 (2006), 174-182. |
[33] |
E. S. Meadows and T. A. Badgwell, Feedback through steady-state target optimization for nonlinear model predictive control, Journal of Vibration and Control, 4 (1998), 61-74. |
[34] |
S. Mondie, R. Lozano and J. Collado, Resetting process-model control for unstable systems with delay, Proceedings of the 40th IEEE Conference on Decision and Control, 3 (2001), 2247-2252. |
[35] |
J. J. Nieto, Basic theory for nonresonance impulsive periodic problems of first order, Proceedings of the American Mathematical Society, 125 (1997), 2599-2604. |
[36] |
J. J. Nieto and D. O'Regan, Variational approach to impulsive differential equations, Nonlinear Analysis: Real World Applications, 10 (2009), 680-690. |
[37] |
J. C. Panetta, A mathematical model of periodically pulsed chemotherapy: Tumor recurrence and metastasis in a competition environment, Bulletin of Mathematical Biology, 58 (1996), 425-447. |
[38] |
J. C. Panetta, A mathematical model of drug resistant: Heterogeneous tumors, Mathematical Biosciences, 147 (1998), 41-61. |
[39] |
T. C. Reluga, Analysis of periodic growth disturbance models, Theoretical Population Biology, 66 (2004), 151-161. |
[40] |
M. G. Roberts and B. T. Grenfell, The population dynamics of nematode infections of ruminants: Periodic perturbations as a model for management, Mathematical Medicine and Biology, 8 (1991), 83-93. |
[41] |
M. G. Roberts and B. T. Grenfell, The population dynamics of nematode infections of ruminants: The effect of seasonally in the free-living stages, Mathematical Medicine and Biology, 9 (1992), 29-41. |
[42] |
M. G. Roberts and J. A. P. Heesterbeek, A simple parasite model with complicated dynamics, Journal of Mathematical Biology, 37 (1998), 272-290. |
[43] |
A. M. Samoilenko and N. A. Perestyuk, "Impulsive Differential Equations,'' World Scientific, Singapore, 1995. |
[44] |
R. Scribner, A. S. Ackleh, B. G. Fitzpatrick, G. Jacquez, J. J. Thibodeaux, R. Rommel and N. Simonsen, A systems approach to college drinking: Development of a deterministic model for testing alcohol control policies, Journal of Studies on Alcohol and Drugs, 70 (2009), 805-821. |
[45] |
B. Shulgin, L. Stone and Z. Agur, Pulse vaccination strategy in the SIR epidemic model, Bulletin of Mathematical Biology, 60 (1998), 1-26. |
[46] |
D. W. Stephens and J. R. Krebs, "Foraging Theory," Princeton University Press, Princeton, 1986. |
[47] |
J. S. Tsai, F. Chen, S. Guo, C. Chen and L. Shieh, A novel tracker for a class of sampled-data nonlinear systems, Journal of Vibration and Control, 17 (2011), 81-101. |
[48] |
P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002), 29-48. |
[49] |
A. Winfree, "The Geometry of Biological Time," $2^{nd}$ edition, Springer, New York, 2001. |
[50] |
J. Yan, A. Zhao and J. J. Nieto, Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka-Volterra systems, Mathematical and Computer Modelling, 40 (2004), 509-518. |
[51] |
W. Zhang and M. Fan, Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays, Mathematical and Computer Modelling, 39 (2004), 479-493. |
[52] |
H. Zhang, L. S. Chen and J. J. Nieto, A delayed epidemic model with stage-structure and pulses for management strategy, Nonlinear Analysis: Real World Applications, 9 (2008), 1714-1726. |
[53] |
X. Zhang, Z. Shuai and K. Wang, Optimal impulsive harvesting policy for single population, Nonlinear Analysis: Real World Applications, 4 (2003), 639-651. |