• Previous Article
    Mathematical models of contact patterns between age groups for predicting the spread of infectious diseases
  • MBE Home
  • This Issue
  • Next Article
    The role of multiple modeling perspectives in students' learning of exponential growth
2013, 10(5&6): 1455-1474. doi: 10.3934/mbe.2013.10.1455

The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile

1. 

Mathematical, Computational & Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Box 872402, Tempe, AZ 85287

2. 

Department of Epidemiology, Ministerio de Salud, Santiago, Chile

3. 

Universidad del Desarrollo, Santiago, Chile, Chile

4. 

School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, United States

5. 

Tulane University, New Orleans, LA, 70118, United States

Received  September 2012 Revised  February 2013 Published  August 2013

We use a stochastic simulation model to explore the effect of reactive intervention strategies during the 2002 dengue outbreak in the small population of Easter Island, Chile. We quantified the effect of interventions on the transmission dynamics and epidemic size as a function of the simulated control intensity levels and the timing of initiation of control interventions. Because no dengue outbreaks had been reported prior to 2002 in Easter Island, the 2002 epidemic provided a unique opportunity to estimate the basic reproduction number $R_0$ during the initial epidemic phase, prior to the start of control interventions. We estimated $R_0$ at $27.2$ ($95 \%$CI: $14.8$, $49.3$). We found that the final epidemic size is highly sensitive to the timing of start of interventions. However, even when the control interventions start several weeks after the epidemic onset, reactive intervention efforts can have a significant impact on the final epidemic size. Our results indicate that the rapid implementation of control interventions can have a significant effect in reducing the epidemic size of dengue epidemics.
Citation: Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455
References:
[1]

El Vigia (Boletín de Vigilancia en Salud Püblica), 16 (2002), 37-38. Google Scholar

[2]

Oxford University Press, Oxford, UK, 1991. doi: 10.1016/0046-8177(90)90224-S.  Google Scholar

[3]

Springer-Verlag, New York, 2000. doi: 10.1007/978-1-4614-1686-9.  Google Scholar

[4]

BMC Infectious Diseases, 11 (2011), 164. doi: 10.1186/1471-2334-11-164.  Google Scholar

[5]

Mathematical Biosciences, 208 (2007), 571-589. doi: 10.1016/j.mbs.2006.11.011.  Google Scholar

[6]

Epidemiology and Infection, 8 (2008), 1-11. doi: 10.1017/S0950268808000290.  Google Scholar

[7]

Journal of Environmental Health, 68 (2006), 40-44. Google Scholar

[8]

Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2000.  Google Scholar

[9]

, Dirección Meteorológica de Chile., Available from: , ().   Google Scholar

[10]

Tropical Medicine and International Health, 11 (2006), 332-340. doi: 10.1111/j.1365-3156.2006.01560.x.  Google Scholar

[11]

Phil. Trans. Roy. Soc. Lond. B, 354 (1999), 757-768. doi: 10.1098/rstb.1999.0428.  Google Scholar

[12]

American Journal of Tropical Medicine and Hygiene, 53 (1995), 489-506. Google Scholar

[13]

Clinical Microbiology Reviews, 11 (1998), 480-496. Google Scholar

[14]

Mathematical Biosciences, 209 (2007), 361-385. doi: 10.1016/j.mbs.2007.02.004.  Google Scholar

[15]

Annu Rev Entomol., 53 (2007), 273-291. doi: 10.1146/annurev.ento.53.103106.093326.  Google Scholar

[16]

Trop. Med. Int. Health., 14 (2009), 628-638. doi: 10.1111/j.1365-3156.2009.02277.x.  Google Scholar

[17]

American Journal of Tropical Medicine and Hygiene, 80 (2009), 66-71. Google Scholar

[18]

Mathematical Biosciences, 155 (1999), 77-109. doi: 10.1016/S0025-5564(98)10057-3.  Google Scholar

[19]

Instituto Nacional de Estadísticas (INE), Estadísticas Demográficas y Vitales, 2009., Available from: , ().   Google Scholar

[20]

Michigan Thompson-Shore, Inc., Michigan, 1996. Google Scholar

[21]

American Journal Tropical Medicine and Hygiene, 57 (1997), 285-297. Google Scholar

[22]

American Journal of Epidemiology, 133 (1991), 1168-1178. Google Scholar

[23]

Southeast Asian Journal of Tropical Medicine and Public Health, 16 (1985), 560-568. Google Scholar

[24]

Memórias do Instituto Oswaldo Cruz, 98 (2003), 871-878. doi: 10.1590/S0074-02762003000700002.  Google Scholar

[25]

Chapter Epidemics, Oxford University Press, London, (1957), 45-62. Google Scholar

[26]

Transactions of the Royal Society of Tropical Medicine and Hygiene, 88 (1994), 58-59. Google Scholar

[27]

Transactions of the Royal Society of Tropical Medicine and Hygiene, 95 (2001), 370-374. doi: 10.1016/S0035-9203(01)90184-1.  Google Scholar

[28]

American Journal Tropical Medicine and Hygiene, 70 (2004), 346-350. Google Scholar

[29]

American Journal of Tropical Medicine and Hygiene, 58 (1998), 277-282. Google Scholar

[30]

Bulletin of Mathematical Biology, 68 (2006), 1945-1974. doi: 10.1007/s11538-006-9067-y.  Google Scholar

[31]

Emerg Infect Dis., 9 (2003), 1465-1467. doi: 10.3201/eid0911.020788.  Google Scholar

[32]

John Murray, London, 1910. Google Scholar

[33]

Southeast Asian Journal of Tropical Medicine and Public Health, 24 (1993), 369-375. Google Scholar

[34]

PLoS Biology, 2 (2004), 1957-1964. Google Scholar

[35]

PLoS Negl. Trop. Dis., 3 (2009), e481. doi: 10.1371/journal.pntd.0000481.  Google Scholar

[36]

Mathematical Biosciences, 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[37]

Journal of Infectious Diseases, 181 (2000), 2-9. doi: 10.1086/315215.  Google Scholar

[38]

PLoS Medicine, 2 (2005), e174. doi: 10.1371/journal.pmed.0020174.  Google Scholar

[39]

World Health Organization, Dengue and dengue hemorrhagic fever, accessed March 04, 2006., Available from: , ().   Google Scholar

[40]

World Health Organization, Clinical diagnosis of dengue, accessed April 04, 2006., Available from: , (): 012.   Google Scholar

show all references

References:
[1]

El Vigia (Boletín de Vigilancia en Salud Püblica), 16 (2002), 37-38. Google Scholar

[2]

Oxford University Press, Oxford, UK, 1991. doi: 10.1016/0046-8177(90)90224-S.  Google Scholar

[3]

Springer-Verlag, New York, 2000. doi: 10.1007/978-1-4614-1686-9.  Google Scholar

[4]

BMC Infectious Diseases, 11 (2011), 164. doi: 10.1186/1471-2334-11-164.  Google Scholar

[5]

Mathematical Biosciences, 208 (2007), 571-589. doi: 10.1016/j.mbs.2006.11.011.  Google Scholar

[6]

Epidemiology and Infection, 8 (2008), 1-11. doi: 10.1017/S0950268808000290.  Google Scholar

[7]

Journal of Environmental Health, 68 (2006), 40-44. Google Scholar

[8]

Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2000.  Google Scholar

[9]

, Dirección Meteorológica de Chile., Available from: , ().   Google Scholar

[10]

Tropical Medicine and International Health, 11 (2006), 332-340. doi: 10.1111/j.1365-3156.2006.01560.x.  Google Scholar

[11]

Phil. Trans. Roy. Soc. Lond. B, 354 (1999), 757-768. doi: 10.1098/rstb.1999.0428.  Google Scholar

[12]

American Journal of Tropical Medicine and Hygiene, 53 (1995), 489-506. Google Scholar

[13]

Clinical Microbiology Reviews, 11 (1998), 480-496. Google Scholar

[14]

Mathematical Biosciences, 209 (2007), 361-385. doi: 10.1016/j.mbs.2007.02.004.  Google Scholar

[15]

Annu Rev Entomol., 53 (2007), 273-291. doi: 10.1146/annurev.ento.53.103106.093326.  Google Scholar

[16]

Trop. Med. Int. Health., 14 (2009), 628-638. doi: 10.1111/j.1365-3156.2009.02277.x.  Google Scholar

[17]

American Journal of Tropical Medicine and Hygiene, 80 (2009), 66-71. Google Scholar

[18]

Mathematical Biosciences, 155 (1999), 77-109. doi: 10.1016/S0025-5564(98)10057-3.  Google Scholar

[19]

Instituto Nacional de Estadísticas (INE), Estadísticas Demográficas y Vitales, 2009., Available from: , ().   Google Scholar

[20]

Michigan Thompson-Shore, Inc., Michigan, 1996. Google Scholar

[21]

American Journal Tropical Medicine and Hygiene, 57 (1997), 285-297. Google Scholar

[22]

American Journal of Epidemiology, 133 (1991), 1168-1178. Google Scholar

[23]

Southeast Asian Journal of Tropical Medicine and Public Health, 16 (1985), 560-568. Google Scholar

[24]

Memórias do Instituto Oswaldo Cruz, 98 (2003), 871-878. doi: 10.1590/S0074-02762003000700002.  Google Scholar

[25]

Chapter Epidemics, Oxford University Press, London, (1957), 45-62. Google Scholar

[26]

Transactions of the Royal Society of Tropical Medicine and Hygiene, 88 (1994), 58-59. Google Scholar

[27]

Transactions of the Royal Society of Tropical Medicine and Hygiene, 95 (2001), 370-374. doi: 10.1016/S0035-9203(01)90184-1.  Google Scholar

[28]

American Journal Tropical Medicine and Hygiene, 70 (2004), 346-350. Google Scholar

[29]

American Journal of Tropical Medicine and Hygiene, 58 (1998), 277-282. Google Scholar

[30]

Bulletin of Mathematical Biology, 68 (2006), 1945-1974. doi: 10.1007/s11538-006-9067-y.  Google Scholar

[31]

Emerg Infect Dis., 9 (2003), 1465-1467. doi: 10.3201/eid0911.020788.  Google Scholar

[32]

John Murray, London, 1910. Google Scholar

[33]

Southeast Asian Journal of Tropical Medicine and Public Health, 24 (1993), 369-375. Google Scholar

[34]

PLoS Biology, 2 (2004), 1957-1964. Google Scholar

[35]

PLoS Negl. Trop. Dis., 3 (2009), e481. doi: 10.1371/journal.pntd.0000481.  Google Scholar

[36]

Mathematical Biosciences, 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[37]

Journal of Infectious Diseases, 181 (2000), 2-9. doi: 10.1086/315215.  Google Scholar

[38]

PLoS Medicine, 2 (2005), e174. doi: 10.1371/journal.pmed.0020174.  Google Scholar

[39]

World Health Organization, Dengue and dengue hemorrhagic fever, accessed March 04, 2006., Available from: , ().   Google Scholar

[40]

World Health Organization, Clinical diagnosis of dengue, accessed April 04, 2006., Available from: , (): 012.   Google Scholar

[1]

Jing Feng, Bin-Guo Wang. An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3069-3096. doi: 10.3934/dcdsb.2020220

[2]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[3]

Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217

[4]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[5]

Pankaj Kumar Tiwari, Rajesh Kumar Singh, Subhas Khajanchi, Yun Kang, Arvind Kumar Misra. A mathematical model to restore water quality in urban lakes using Phoslock. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3143-3175. doi: 10.3934/dcdsb.2020223

[6]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[7]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[8]

Lara Abi Rizk, Jean-Baptiste Burie, Arnaud Ducrot. Asymptotic speed of spread for a nonlocal evolutionary-epidemic system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021064

[9]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[10]

Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565-578. doi: 10.3934/mbe.2013.10.565

[11]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446

[12]

Luigi Barletti, Giovanni Nastasi, Claudia Negulescu, Vittorio Romano. Mathematical modelling of charge transport in graphene heterojunctions. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021010

[13]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3651-3682. doi: 10.3934/dcds.2021011

[14]

José Antonio Carrillo, Martin Parisot, Zuzanna Szymańska. Mathematical modelling of collagen fibres rearrangement during the tendon healing process. Kinetic & Related Models, 2021, 14 (2) : 283-301. doi: 10.3934/krm.2021005

[15]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[16]

Alexander Dabrowski, Ahcene Ghandriche, Mourad Sini. Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies. Inverse Problems & Imaging, 2021, 15 (3) : 555-597. doi: 10.3934/ipi.2021005

[17]

Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050

[18]

Melis Alpaslan Takan, Refail Kasimbeyli. Multiobjective mathematical models and solution approaches for heterogeneous fixed fleet vehicle routing problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2073-2095. doi: 10.3934/jimo.2020059

[19]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[20]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (110)
  • HTML views (0)
  • Cited by (12)

[Back to Top]