2013, 10(5&6): 1541-1560. doi: 10.3934/mbe.2013.10.1541

Michaelis-Menten kinetics, the operator-repressor system, and least squares approaches

1. 

Mathematics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany

Received  January 2013 Revised  March 2013 Published  August 2013

The Michaelis-Menten (MM) function is a fractional linear function depending on two positive parameters. These can be estimated by nonlinear or linear least squares methods. The non-linear methods, based directly on the defect of the MM function, can fail and not produce any minimizer. The linear methods always produce a unique minimizer which, however, may not be positive. Here we give sufficient conditions on the data such that the nonlinear problem has at least one positive minimizer and also conditions for the minimizer of the linear problem to be positive.
    We discuss in detail the models and equilibrium relations of a classical operator-repressor system, and we extend our approach to the MM problem with leakage and to reversible MM kinetics. The arrangement of the sufficient conditions exhibits the important role of data that have a concavity property (chemically feasible data).
Citation: Karl Peter Hadeler. Michaelis-Menten kinetics, the operator-repressor system, and least squares approaches. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1541-1560. doi: 10.3934/mbe.2013.10.1541
References:
[1]

G. E. Briggs and J. B. S. Haldane, A note on the kinematics of enzyme action, Biochem. J., 19 (1925), 338-339.

[2]

K. P. Hadeler and D. Jukić, K. Sabo, Least squares problems for Michaelis-Menten kinetics, Math. Meth. Appl. Sci., 30 (2007), 1231-1241. doi: 10.1002/mma.835.

[3]

M. W. Hirsch and H. L. Smith, Monotone dynamical systems, in "Handbook of Differential Equations, Vol. 2," Elsevier B. V., Amsterdam, (2006), 239-357

[4]

M. C. Mackey, M. Tyran-Kaminska and R. Yvinec, Molecular distributions in gene regulatory dynamics, J. Theoretical Biology, 274 (2011), 84-96. doi: 10.1016/j.jtbi.2011.01.020.

[5]

L. Michaelis and M. L. Menten, Die kinetik der invertinwirkung, Biochem. Z., 49 (1913), 333-369.

[6]

L. Noethen and S. Walcher, Tikhonov's theorem and quasi-steady state, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 945-961. doi: 10.3934/dcdsb.2011.16.945.

[7]

L. A. Segel and M. Slemrod, The quasi-steady-state assumption: A case study in perturbation, Thermochim. Acta, 31 (1989), 446-477. doi: 10.1137/1031091.

[8]

Gad Yail and Ezra Yagil, On the relation between effector concentration and the rate of induced enzyme synthesis, Biophysical Journal, 11 (1971), 11-27.

show all references

References:
[1]

G. E. Briggs and J. B. S. Haldane, A note on the kinematics of enzyme action, Biochem. J., 19 (1925), 338-339.

[2]

K. P. Hadeler and D. Jukić, K. Sabo, Least squares problems for Michaelis-Menten kinetics, Math. Meth. Appl. Sci., 30 (2007), 1231-1241. doi: 10.1002/mma.835.

[3]

M. W. Hirsch and H. L. Smith, Monotone dynamical systems, in "Handbook of Differential Equations, Vol. 2," Elsevier B. V., Amsterdam, (2006), 239-357

[4]

M. C. Mackey, M. Tyran-Kaminska and R. Yvinec, Molecular distributions in gene regulatory dynamics, J. Theoretical Biology, 274 (2011), 84-96. doi: 10.1016/j.jtbi.2011.01.020.

[5]

L. Michaelis and M. L. Menten, Die kinetik der invertinwirkung, Biochem. Z., 49 (1913), 333-369.

[6]

L. Noethen and S. Walcher, Tikhonov's theorem and quasi-steady state, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 945-961. doi: 10.3934/dcdsb.2011.16.945.

[7]

L. A. Segel and M. Slemrod, The quasi-steady-state assumption: A case study in perturbation, Thermochim. Acta, 31 (1989), 446-477. doi: 10.1137/1031091.

[8]

Gad Yail and Ezra Yagil, On the relation between effector concentration and the rate of induced enzyme synthesis, Biophysical Journal, 11 (1971), 11-27.

[1]

Yangjin Kim, Khalid Boushaba. An enzyme kinetics model of tumor dormancy, regulation of secondary metastases. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1465-1498. doi: 10.3934/dcdss.2011.4.1465

[2]

Ya-Xiang Yuan. Recent advances in numerical methods for nonlinear equations and nonlinear least squares. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 15-34. doi: 10.3934/naco.2011.1.15

[3]

Hassan Mohammad, Mohammed Yusuf Waziri, Sandra Augusta Santos. A brief survey of methods for solving nonlinear least-squares problems. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 1-13. doi: 10.3934/naco.2019001

[4]

Chengjin Li. Parameter-related projection-based iterative algorithm for a kind of generalized positive semidefinite least squares problem. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 511-520. doi: 10.3934/naco.2020048

[5]

Jean-Pierre Françoise, Hongjun Ji. The stability analysis of brain lactate kinetics. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2135-2143. doi: 10.3934/dcdss.2020182

[6]

Chengjun Guo, Chengxian Guo, Sameed Ahmed, Xinfeng Liu. Moment stability for nonlinear stochastic growth kinetics of breast cancer stem cells with time-delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2473-2489. doi: 10.3934/dcdsb.2016056

[7]

Yanfei Lu, Qingfei Yin, Hongyi Li, Hongli Sun, Yunlei Yang, Muzhou Hou. Solving higher order nonlinear ordinary differential equations with least squares support vector machines. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1481-1502. doi: 10.3934/jimo.2019012

[8]

Carole Guillevin, Rémy Guillevin, Alain Miranville, Angélique Perrillat-Mercerot. Analysis of a mathematical model for brain lactate kinetics. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1225-1242. doi: 10.3934/mbe.2018056

[9]

Robert P. Gilbert, Philippe Guyenne, Ying Liu. Modeling of the kinetics of vitamin D$_3$ in osteoblastic cells. Mathematical Biosciences & Engineering, 2013, 10 (2) : 319-344. doi: 10.3934/mbe.2013.10.319

[10]

Dan Stanescu, Benito Chen-Charpentier. Random coefficient differential equation models for Monod kinetics. Conference Publications, 2009, 2009 (Special) : 719-728. doi: 10.3934/proc.2009.2009.719

[11]

Sarthok Sircar, Anthony Roberts. Ion mediated crosslink driven mucous swelling kinetics. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1937-1951. doi: 10.3934/dcdsb.2016030

[12]

Boris Baeumer, Lipika Chatterjee, Peter Hinow, Thomas Rades, Ami Radunskaya, Ian Tucker. Predicting the drug release kinetics of matrix tablets. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 261-277. doi: 10.3934/dcdsb.2009.12.261

[13]

Qinqin Chai, Ryan Loxton, Kok Lay Teo, Chunhua Yang. A unified parameter identification method for nonlinear time-delay systems. Journal of Industrial and Management Optimization, 2013, 9 (2) : 471-486. doi: 10.3934/jimo.2013.9.471

[14]

Zhuoyi Xu, Yong Xia, Deren Han. On box-constrained total least squares problem. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 439-449. doi: 10.3934/naco.2020043

[15]

Xiao-Wen Chang, David Titley-Peloquin. An improved algorithm for generalized least squares estimation. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 451-461. doi: 10.3934/naco.2020044

[16]

Roy Malka, Vered Rom-Kedar. Bacteria--phagocyte dynamics, axiomatic modelling and mass-action kinetics. Mathematical Biosciences & Engineering, 2011, 8 (2) : 475-502. doi: 10.3934/mbe.2011.8.475

[17]

Annegret Glitzky. Energy estimates for electro-reaction-diffusion systems with partly fast kinetics. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 159-174. doi: 10.3934/dcds.2009.25.159

[18]

Evans K. Afenya, Calixto P. Calderón. Growth kinetics of cancer cells prior to detection and treatment: An alternative view. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 25-28. doi: 10.3934/dcdsb.2004.4.25

[19]

Pei Zhang, Siyan Liu, Dan Lu, Ramanan Sankaran, Guannan Zhang. An out-of-distribution-aware autoencoder model for reduced chemical kinetics. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 913-930. doi: 10.3934/dcdss.2021138

[20]

Lei Wang, Jinlong Yuan, Yingfang Li, Enmin Feng, Zhilong Xiu. Parameter identification of nonlinear delayed dynamical system in microbial fermentation based on biological robustness. Numerical Algebra, Control and Optimization, 2014, 4 (2) : 103-113. doi: 10.3934/naco.2014.4.103

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]