-
Previous Article
Carlos is a Canadian
- MBE Home
- This Issue
-
Next Article
My reflections on the Blackwell-Tapia prize
Increasing survival time decreases the cost-effectiveness of using "test & treat'' to eliminate HIV epidemics
1. | Center for Biomedical Modeling, Semel Institute of Neuroscience & Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, 10940 Wilshire Blvd, Suite 1450, Los Angeles, CA 90024, United States, United States, United States |
References:
[1] |
S. Blower, H. B. Gershengorn and R. M. Grant, A tale of two futures: HIV and antiviral therapy in San Francisco, Science, 287 (2000), 650-654. |
[2] |
S. Blower, L. Ma, P. Farmer and S. Koenig, Predicting the impact of antiretrovirals in resource-poor settings: preventing HIV infections whilst controlling drug resistance, Curr. Drug Targets Infect. Disord., 3 (2003), 345-353.
doi: 10.2174/1568005033480999. |
[3] |
S. Blower and H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example, Int. Stat. Rev., 62 (1994), 229-243.
doi: 10.2307/1403510. |
[4] |
M. S. Cohen, T. D. Mastro and W. Cates, Universal voluntary HIV testing and immediate antiretroviral therapy, Lancet, 373 (2009), 1077; author reply, 1080-1071.
doi: 10.1016/S0140-6736(09)60640-1. |
[5] |
M. S. Cohen, Y. Q. Chen, M. McCauley, T. Gamble, M. C. Hosseinipour, N. Kumarasamy, J. G. Hakim, J. Kumwenda, B. Grinsztejn and J. H. S. Pilotto, et al., Prevention of HIV-1 infection with early antiretroviral therapy, N. Engl. J. Med., 365 (2011), 493-505.
doi: 10.1056/NEJMoa1105243. |
[6] |
M. Das, P. L. Chu, G.-M. Santos, S. Scheer, E. Vittinghoff, W. McFarland and G. N. Colfax, Decreases in community viral load are accompanied by reductions in new HIV infections in San Francisco, PLoS ONE, 5 (2010), e11068.
doi: 10.1371/journal.pone.0011068. |
[7] |
C. W. Dieffenbach and A. S. Fauci, Universal voluntary testing and treatment for prevention of HIV transmission, JAMA, 301 (2009), 2380-2382.
doi: 10.1001/jama.2009.828. |
[8] |
O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,'' Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2000. |
[9] |
P. J. Dodd, G. P. Garnett and T. B. Hallett, Examining the promise of HIV elimination by 'test and treat' in hyperendemic settings, AIDS, 24 (2010), 729-735.
doi: 10.1097/QAD.0b013e32833433fe. |
[10] |
W. M. El-Sadr, M. Affrunti, T. Gamble and A. Zerbe, Antiretroviral therapy: A promising HIV prevention strategy?, J. Acquir. Immune Defic. Syndr., 55 (2010), S116-121.
doi: 10.1097/QAI.0b013e3181fbca6e. |
[11] |
P. Farmer, F. Léandre, J. S. Mukheriee, M. Claude, P. Nevil, M. C. Smith-Fawzi, S. P. Koenig, A. Castro, M. C. Becerra, J. Sachs, et al., Community-based approaches to HIV treatment in resource-poor settings, Lancet, 358 (2001), 404-409.
doi: 10.1016/S0140-6736(01)05550-7. |
[12] |
E. M. Gardner, M. P. McLees, J. F. Steiner, C. del Rio and W. J. Burman, The spectrum of engagement in HIV care and its relevance to test-and-treat strategies for prevention of HIV infection, Clin. Infect. Dis., 52 (2011), 793-800.
doi: 10.1093/cid/ciq243. |
[13] |
G. P. Garnett and R. F. Baggaley, Treating our way out of the HIV pandemic: Could we, would we, should we?, Lancet, 373 (2009), 9-11.
doi: 10.1016/S0140-6736(08)61698-0. |
[14] |
R. M. Granich, C. F. Gilks, C. Dye, K. M. De Cock and B. G. Williams, Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: A mathematical model, Lancet, 373 (2009), 48-57.
doi: 10.1016/S0140-6736(08)61697-9. |
[15] |
R. Granich, J. G. Kahn, R. Bennett, C. B. Holmes, N. Garg, C. Serenata, M. L. Sabin, C. Makhlouf-Obermeyer, C. De Filippo Mack and P. Williams, et al., Expanding ART for treatment and prevention of HIV in South Africa: Estimated cost and cost-effectiveness 2011-2050, PLoS ONE, 7 (2012), e30216.
doi: 10.1371/journal.pone.0030216. |
[16] |
R. H. Gray, M. J. Wawer, R. Brookmeyer, N. K. Sewankambo, D. Serwadda, F. Wabwire-Mangen, T. Lutalo, X. Li, T. vanCott, T. C. Quinn and R. P. Team, Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda, Lancet, 357 (2001), 1149-1153.
doi: 10.1016/S0140-6736(00)04331-2. |
[17] |
H. W. Hethcote and J. A. Yorke, "Gonorrhea Transmission Dynamics and Control," Lecture Notes in Biomathematics, 56, Springer-Verlag, Berlin, 1984. |
[18] |
V. D. Lima, K. Johnston, R. S. Hogg, A. R. Levy, P. R. Harrigan, A. Anema and J. S. G. Montaner, Expanded access to highly active antiretroviral therapy: A potentially powerful strategy to curb the growth of the HIV epidemic, J. Infect. Dis., 198 (2008), 59-67.
doi: 10.1086/588673. |
[19] |
E. J. Mills, C. Bakanda, J. Birungi, K. Chan, N. Ford, C. L. Cooper, J. B. Nachega, M. Dybul and R. S. Hogg, Life expectancy of persons receiving combination antiretroviral therapy in low-income countries: A cohort analysis from Uganda, Ann. Intern. Med., 155 (2011), 209-216.
doi: 10.7326/0003-4819-155-4-201108160-00358. |
[20] |
J. S. G. Montaner, R. Hogg, E. Wood, T. Kerr, M. Tyndall, A. R. Levy and P. R. Harrigan, The case for expanding access to highly active antiretroviral therapy to curb the growth of the HIV epidemic, Lancet, 368 (2006), 531-536.
doi: 10.1016/S0140-6736(06)69162-9. |
[21] |
National Department of Health, The national antenatal sentinel HIV and syphilis prevalence survey, South Africa, 2006, (2007). |
[22] |
National Department of Health, The national antenatal sentinel HIV and syphilis prevalence survey, South Africa, 2010, (2011). |
[23] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[24] |
J. X. Velasco-Hernandez, H. B. Gershengorn and S. M. Blower, Could widespread use of combination antiretroviral therapy eradicate HIV epidemics?, Lancet Infect. Dis., 2 (2002), 487-493.
doi: 10.1016/S1473-3099(02)00346-8. |
[25] |
B. G. Wagner, J. S. Kahn and S. Blower, Should we try to eliminate HIV epidemics by using a 'Test and Treat' strategy?, AIDS, 24 (2010), 775-776.
doi: 10.1097/QAD.0b013e3283366782. |
[26] |
B. G. Wagner and S. Blower, Costs of eliminating HIV in South Africa have been underestimated, Lancet, 376 (2010), 953-954.
doi: 10.1016/S0140-6736(10)61442-0. |
[27] |
B. G. Wagner and S. Blower, Universal access to HIV treatment versus universal 'test and treat': Transmission, drug resistance & treatment costs, PLoS ONE, 7 (2012), e41212.
doi: 10.1371/journal.pone.0041212. |
show all references
References:
[1] |
S. Blower, H. B. Gershengorn and R. M. Grant, A tale of two futures: HIV and antiviral therapy in San Francisco, Science, 287 (2000), 650-654. |
[2] |
S. Blower, L. Ma, P. Farmer and S. Koenig, Predicting the impact of antiretrovirals in resource-poor settings: preventing HIV infections whilst controlling drug resistance, Curr. Drug Targets Infect. Disord., 3 (2003), 345-353.
doi: 10.2174/1568005033480999. |
[3] |
S. Blower and H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example, Int. Stat. Rev., 62 (1994), 229-243.
doi: 10.2307/1403510. |
[4] |
M. S. Cohen, T. D. Mastro and W. Cates, Universal voluntary HIV testing and immediate antiretroviral therapy, Lancet, 373 (2009), 1077; author reply, 1080-1071.
doi: 10.1016/S0140-6736(09)60640-1. |
[5] |
M. S. Cohen, Y. Q. Chen, M. McCauley, T. Gamble, M. C. Hosseinipour, N. Kumarasamy, J. G. Hakim, J. Kumwenda, B. Grinsztejn and J. H. S. Pilotto, et al., Prevention of HIV-1 infection with early antiretroviral therapy, N. Engl. J. Med., 365 (2011), 493-505.
doi: 10.1056/NEJMoa1105243. |
[6] |
M. Das, P. L. Chu, G.-M. Santos, S. Scheer, E. Vittinghoff, W. McFarland and G. N. Colfax, Decreases in community viral load are accompanied by reductions in new HIV infections in San Francisco, PLoS ONE, 5 (2010), e11068.
doi: 10.1371/journal.pone.0011068. |
[7] |
C. W. Dieffenbach and A. S. Fauci, Universal voluntary testing and treatment for prevention of HIV transmission, JAMA, 301 (2009), 2380-2382.
doi: 10.1001/jama.2009.828. |
[8] |
O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,'' Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2000. |
[9] |
P. J. Dodd, G. P. Garnett and T. B. Hallett, Examining the promise of HIV elimination by 'test and treat' in hyperendemic settings, AIDS, 24 (2010), 729-735.
doi: 10.1097/QAD.0b013e32833433fe. |
[10] |
W. M. El-Sadr, M. Affrunti, T. Gamble and A. Zerbe, Antiretroviral therapy: A promising HIV prevention strategy?, J. Acquir. Immune Defic. Syndr., 55 (2010), S116-121.
doi: 10.1097/QAI.0b013e3181fbca6e. |
[11] |
P. Farmer, F. Léandre, J. S. Mukheriee, M. Claude, P. Nevil, M. C. Smith-Fawzi, S. P. Koenig, A. Castro, M. C. Becerra, J. Sachs, et al., Community-based approaches to HIV treatment in resource-poor settings, Lancet, 358 (2001), 404-409.
doi: 10.1016/S0140-6736(01)05550-7. |
[12] |
E. M. Gardner, M. P. McLees, J. F. Steiner, C. del Rio and W. J. Burman, The spectrum of engagement in HIV care and its relevance to test-and-treat strategies for prevention of HIV infection, Clin. Infect. Dis., 52 (2011), 793-800.
doi: 10.1093/cid/ciq243. |
[13] |
G. P. Garnett and R. F. Baggaley, Treating our way out of the HIV pandemic: Could we, would we, should we?, Lancet, 373 (2009), 9-11.
doi: 10.1016/S0140-6736(08)61698-0. |
[14] |
R. M. Granich, C. F. Gilks, C. Dye, K. M. De Cock and B. G. Williams, Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: A mathematical model, Lancet, 373 (2009), 48-57.
doi: 10.1016/S0140-6736(08)61697-9. |
[15] |
R. Granich, J. G. Kahn, R. Bennett, C. B. Holmes, N. Garg, C. Serenata, M. L. Sabin, C. Makhlouf-Obermeyer, C. De Filippo Mack and P. Williams, et al., Expanding ART for treatment and prevention of HIV in South Africa: Estimated cost and cost-effectiveness 2011-2050, PLoS ONE, 7 (2012), e30216.
doi: 10.1371/journal.pone.0030216. |
[16] |
R. H. Gray, M. J. Wawer, R. Brookmeyer, N. K. Sewankambo, D. Serwadda, F. Wabwire-Mangen, T. Lutalo, X. Li, T. vanCott, T. C. Quinn and R. P. Team, Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda, Lancet, 357 (2001), 1149-1153.
doi: 10.1016/S0140-6736(00)04331-2. |
[17] |
H. W. Hethcote and J. A. Yorke, "Gonorrhea Transmission Dynamics and Control," Lecture Notes in Biomathematics, 56, Springer-Verlag, Berlin, 1984. |
[18] |
V. D. Lima, K. Johnston, R. S. Hogg, A. R. Levy, P. R. Harrigan, A. Anema and J. S. G. Montaner, Expanded access to highly active antiretroviral therapy: A potentially powerful strategy to curb the growth of the HIV epidemic, J. Infect. Dis., 198 (2008), 59-67.
doi: 10.1086/588673. |
[19] |
E. J. Mills, C. Bakanda, J. Birungi, K. Chan, N. Ford, C. L. Cooper, J. B. Nachega, M. Dybul and R. S. Hogg, Life expectancy of persons receiving combination antiretroviral therapy in low-income countries: A cohort analysis from Uganda, Ann. Intern. Med., 155 (2011), 209-216.
doi: 10.7326/0003-4819-155-4-201108160-00358. |
[20] |
J. S. G. Montaner, R. Hogg, E. Wood, T. Kerr, M. Tyndall, A. R. Levy and P. R. Harrigan, The case for expanding access to highly active antiretroviral therapy to curb the growth of the HIV epidemic, Lancet, 368 (2006), 531-536.
doi: 10.1016/S0140-6736(06)69162-9. |
[21] |
National Department of Health, The national antenatal sentinel HIV and syphilis prevalence survey, South Africa, 2006, (2007). |
[22] |
National Department of Health, The national antenatal sentinel HIV and syphilis prevalence survey, South Africa, 2010, (2011). |
[23] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[24] |
J. X. Velasco-Hernandez, H. B. Gershengorn and S. M. Blower, Could widespread use of combination antiretroviral therapy eradicate HIV epidemics?, Lancet Infect. Dis., 2 (2002), 487-493.
doi: 10.1016/S1473-3099(02)00346-8. |
[25] |
B. G. Wagner, J. S. Kahn and S. Blower, Should we try to eliminate HIV epidemics by using a 'Test and Treat' strategy?, AIDS, 24 (2010), 775-776.
doi: 10.1097/QAD.0b013e3283366782. |
[26] |
B. G. Wagner and S. Blower, Costs of eliminating HIV in South Africa have been underestimated, Lancet, 376 (2010), 953-954.
doi: 10.1016/S0140-6736(10)61442-0. |
[27] |
B. G. Wagner and S. Blower, Universal access to HIV treatment versus universal 'test and treat': Transmission, drug resistance & treatment costs, PLoS ONE, 7 (2012), e41212.
doi: 10.1371/journal.pone.0041212. |
[1] |
Folashade B. Agusto. Optimal control and cost-effectiveness analysis of a three age-structured transmission dynamics of chikungunya virus. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 687-715. doi: 10.3934/dcdsb.2017034 |
[2] |
Ping Yan. A frailty model for intervention effectiveness against disease transmission when implemented with unobservable heterogeneity. Mathematical Biosciences & Engineering, 2018, 15 (1) : 275-298. doi: 10.3934/mbe.2018012 |
[3] |
Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control and Related Fields, 2022, 12 (1) : 201-223. doi: 10.3934/mcrf.2021007 |
[4] |
Jinliang Wang, Jiying Lang, Yuming Chen. Global dynamics of an age-structured HIV infection model incorporating latency and cell-to-cell transmission. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3721-3747. doi: 10.3934/dcdsb.2017186 |
[5] |
Jinhu Xu, Yicang Zhou. Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences & Engineering, 2016, 13 (2) : 343-367. doi: 10.3934/mbe.2015006 |
[6] |
Cristina Cross, Alysse Edwards, Dayna Mercadante, Jorge Rebaza. Dynamics of a networked connectivity model of epidemics. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3379-3390. doi: 10.3934/dcdsb.2016102 |
[7] |
Jane M. Heffernan, Yijun Lou, Marc Steben, Jianhong Wu. Cost-effectiveness evaluation of gender-based vaccination programs against sexually transmitted infections. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 447-466. doi: 10.3934/dcdsb.2014.19.447 |
[8] |
Stephen Tully, Monica-Gabriela Cojocaru, Chris T. Bauch. Multiplayer games and HIV transmission via casual encounters. Mathematical Biosciences & Engineering, 2017, 14 (2) : 359-376. doi: 10.3934/mbe.2017023 |
[9] |
Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455 |
[10] |
Qingkai Kong, Zhipeng Qiu, Zi Sang, Yun Zou. Optimal control of a vector-host epidemics model. Mathematical Control and Related Fields, 2011, 1 (4) : 493-508. doi: 10.3934/mcrf.2011.1.493 |
[11] |
Liling Lin, Linfeng Zhao. CCR model-based evaluation on the effectiveness and maturity of technological innovation. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1425-1437. doi: 10.3934/jimo.2021026 |
[12] |
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595 |
[13] |
Yicang Zhou, Yiming Shao, Yuhua Ruan, Jianqing Xu, Zhien Ma, Changlin Mei, Jianhong Wu. Modeling and prediction of HIV in China: transmission rates structured by infection ages. Mathematical Biosciences & Engineering, 2008, 5 (2) : 403-418. doi: 10.3934/mbe.2008.5.403 |
[14] |
Moatlhodi Kgosimore, Edward M. Lungu. The Effects of Vertical Transmission on the Spread of HIV/AIDS in the Presence of Treatment. Mathematical Biosciences & Engineering, 2006, 3 (2) : 297-312. doi: 10.3934/mbe.2006.3.297 |
[15] |
Oluwaseun Sharomi, Chandra N. Podder, Abba B. Gumel, Baojun Song. Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. Mathematical Biosciences & Engineering, 2008, 5 (1) : 145-174. doi: 10.3934/mbe.2008.5.145 |
[16] |
Romulus Breban, Ian McGowan, Chad Topaz, Elissa J. Schwartz, Peter Anton, Sally Blower. Modeling the potential impact of rectal microbicides to reduce HIV transmission in bathhouses. Mathematical Biosciences & Engineering, 2006, 3 (3) : 459-466. doi: 10.3934/mbe.2006.3.459 |
[17] |
Hui Wan, Jing-An Cui. A model for the transmission of malaria. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 479-496. doi: 10.3934/dcdsb.2009.11.479 |
[18] |
Filipe Rodrigues, Cristiana J. Silva, Delfim F. M. Torres, Helmut Maurer. Optimal control of a delayed HIV model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 443-458. doi: 10.3934/dcdsb.2018030 |
[19] |
Lars Grüne, Marleen Stieler. Multiobjective model predictive control for stabilizing cost criteria. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3905-3928. doi: 10.3934/dcdsb.2018336 |
[20] |
Mahin Salmani, P. van den Driessche. A model for disease transmission in a patchy environment. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 185-202. doi: 10.3934/dcdsb.2006.6.185 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]