-
Previous Article
Distributed delays in a hybrid model of tumor-Immune system interplay
- MBE Home
- This Issue
-
Next Article
Age-structured cell population model to study the influence of growth factors on cell cycle dynamics
Model of tumour angiogenesis -- analysis of stability with respect to delays
1. | Institute of Applied Mathematics and Mechanics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland, Poland, Poland, Poland |
References:
[1] |
Z. Agur, L. Arakelyan, P. Daugulis and Y. Ginosar, Hopf point analysis for angiogenesis models, Discrete Contin. Dyn. Syst. B, 4 (2004), 29-38. |
[2] |
L. Arakelyan, Y. Merbl and Z. Agur, Vessel maturation effects on tumour growth: validation of a computer model in implanted human ovarian carcinoma spheroids, European J. Cancer, 41 (2005), 159-167. |
[3] |
L. Arakelyan, V. Vainstein and Z. Agur, A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of anti-angiogenic and anti-maturation therapy on vascular tumor growth, Angiogenesis, 5 (2002), 203-214. |
[4] |
M. Bodnar and U. Foryś, Angiogenesis model with carrying capacity depending on vessel density, J. Biol. Sys., 17 (2009), 1-25.
doi: 10.1142/S0218339009002739. |
[5] |
K. L. Cooke and P. van den Driessche, On zeroes of some transcendental equations, Funkcj. Ekvacioj, 29 (1986), 77-90. |
[6] |
A. d'Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999), Math. Biosci., 191 (2004), 159-184.
doi: 10.1016/j.mbs.2004.06.003. |
[7] |
_______, The response to antiangiogenic anticancer drugs that inhibit endothelial cell proliferation, Applied Mathematics and Computation, 181 (2006), 1155-1162. |
[8] |
_______, A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy, Math. Med. Biol., 26 (2009), 63-95. |
[9] |
A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors, Math. Biosci. Eng., 222 (2009), 13-26.
doi: 10.1016/j.mbs.2009.08.004. |
[10] |
J. M. L. Ebos and R. S. Kerbel, Antiangiogenic therapy: Impact on invasion, disease progression, and metastasis,, Nat. Rev. Clin. Oncol., 8 (): 1.
|
[11] |
U. Foryś, Biological delay systems and the {Mikhailov criterion of stability}, J. Biol. Sys., 12 (2004), 45-60.
doi: 10.1142/S0218339004001014. |
[12] |
U. Foryś, Y. Kheifetz and Y. Kogan, Critical point analysis for three-variable cancer angiogenesis model, Math. Biosci. Eng., 2 (2005), 511-525. |
[13] |
M. Gałach, Dynamics of the tumor-immune system competition - the effect of time delay, Int J Appl Math Comput Sci, 3 (2003), 395-406. |
[14] |
A. Gilead and M. Neeman, Dynamic remodeling of the vascular bed precedes tumor growth: MLS ovarian carcinoma spheroids implanted in nude mice, Neoplasia, 1 (1999), 226-230.
doi: 10.1038/sj.neo.7900032. |
[15] |
P. Hahnfeldt, D. Panigrahy, J. Folkman and L. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Res., 59 (1999), 4770-4775 (eng). |
[16] |
J. K. Hale, "Theory of Functional Differential Equations," Springer, New York, 1977. |
[17] |
J. K. Hale and S. M. V. Lunel, "Introduction to Functional Differential Equations," Springer, New York, 1993. |
[18] |
S. J. Holash, G. D. Wiegandand and G. D. Yancopoulos, New model of tumour angiogenesis: Dynamic balance between vessel regression andgrowth mediated by angiopoietins and VEGF, Oncogene, 18 (1999), 5356-5362. |
[19] |
R. K. Jain, Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy, Science, 307 (2005), 58-62 (eng). |
[20] |
Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Academic Press Inc., 1993. |
[21] |
V. A. Kuznetzov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunologenic tumors: Parameters estimation and global bifurcation analysis, Bull Math Biol, 56 (1994), 295-321. |
[22] |
U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. Control Optim., 46 (2007), 1052-1079. |
[23] |
_______, Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis, J. Theor. Biol., 252 (2008), 295-312. |
[24] |
M. J. Piotrowska and U. Foryś, Analysis of the Hopf bifurcation for the family of angiogenesis models, J. Math. Anal. Appl., 382 (2011), 180-203.
doi: 10.1016/j.jmaa.2011.04.046. |
[25] |
_______, The nature of Hopf bifurcation for the Gompertz model with delays, Math. and Comp. Modelling, 54 (2011), 2183-2198.
doi: 10.1016/j.mcm.2011.05.027. |
[26] |
A. Świerniak, Comparison of six models of antiangiogenic therapy, Appl. Math., 36 (2009), 333-348. |
[27] |
A. Świerniak, A. Gala, A. Gandolfi and A. d'Onofrio, Optimalization of anti-angiogenic therapy as optimal control problem, in "Proc: IASTED Biomechanics 2006" Actapress, (2006). |
[28] |
H. Ch. Wu, Ch. T. Huang and D. K. Chang, Anti-angiogenic therapeutic drugs for treatment of human cancer, J. Cancer Mol. 4 (2008), 37-45. |
show all references
References:
[1] |
Z. Agur, L. Arakelyan, P. Daugulis and Y. Ginosar, Hopf point analysis for angiogenesis models, Discrete Contin. Dyn. Syst. B, 4 (2004), 29-38. |
[2] |
L. Arakelyan, Y. Merbl and Z. Agur, Vessel maturation effects on tumour growth: validation of a computer model in implanted human ovarian carcinoma spheroids, European J. Cancer, 41 (2005), 159-167. |
[3] |
L. Arakelyan, V. Vainstein and Z. Agur, A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of anti-angiogenic and anti-maturation therapy on vascular tumor growth, Angiogenesis, 5 (2002), 203-214. |
[4] |
M. Bodnar and U. Foryś, Angiogenesis model with carrying capacity depending on vessel density, J. Biol. Sys., 17 (2009), 1-25.
doi: 10.1142/S0218339009002739. |
[5] |
K. L. Cooke and P. van den Driessche, On zeroes of some transcendental equations, Funkcj. Ekvacioj, 29 (1986), 77-90. |
[6] |
A. d'Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999), Math. Biosci., 191 (2004), 159-184.
doi: 10.1016/j.mbs.2004.06.003. |
[7] |
_______, The response to antiangiogenic anticancer drugs that inhibit endothelial cell proliferation, Applied Mathematics and Computation, 181 (2006), 1155-1162. |
[8] |
_______, A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy, Math. Med. Biol., 26 (2009), 63-95. |
[9] |
A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors, Math. Biosci. Eng., 222 (2009), 13-26.
doi: 10.1016/j.mbs.2009.08.004. |
[10] |
J. M. L. Ebos and R. S. Kerbel, Antiangiogenic therapy: Impact on invasion, disease progression, and metastasis,, Nat. Rev. Clin. Oncol., 8 (): 1.
|
[11] |
U. Foryś, Biological delay systems and the {Mikhailov criterion of stability}, J. Biol. Sys., 12 (2004), 45-60.
doi: 10.1142/S0218339004001014. |
[12] |
U. Foryś, Y. Kheifetz and Y. Kogan, Critical point analysis for three-variable cancer angiogenesis model, Math. Biosci. Eng., 2 (2005), 511-525. |
[13] |
M. Gałach, Dynamics of the tumor-immune system competition - the effect of time delay, Int J Appl Math Comput Sci, 3 (2003), 395-406. |
[14] |
A. Gilead and M. Neeman, Dynamic remodeling of the vascular bed precedes tumor growth: MLS ovarian carcinoma spheroids implanted in nude mice, Neoplasia, 1 (1999), 226-230.
doi: 10.1038/sj.neo.7900032. |
[15] |
P. Hahnfeldt, D. Panigrahy, J. Folkman and L. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Res., 59 (1999), 4770-4775 (eng). |
[16] |
J. K. Hale, "Theory of Functional Differential Equations," Springer, New York, 1977. |
[17] |
J. K. Hale and S. M. V. Lunel, "Introduction to Functional Differential Equations," Springer, New York, 1993. |
[18] |
S. J. Holash, G. D. Wiegandand and G. D. Yancopoulos, New model of tumour angiogenesis: Dynamic balance between vessel regression andgrowth mediated by angiopoietins and VEGF, Oncogene, 18 (1999), 5356-5362. |
[19] |
R. K. Jain, Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy, Science, 307 (2005), 58-62 (eng). |
[20] |
Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Academic Press Inc., 1993. |
[21] |
V. A. Kuznetzov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunologenic tumors: Parameters estimation and global bifurcation analysis, Bull Math Biol, 56 (1994), 295-321. |
[22] |
U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. Control Optim., 46 (2007), 1052-1079. |
[23] |
_______, Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis, J. Theor. Biol., 252 (2008), 295-312. |
[24] |
M. J. Piotrowska and U. Foryś, Analysis of the Hopf bifurcation for the family of angiogenesis models, J. Math. Anal. Appl., 382 (2011), 180-203.
doi: 10.1016/j.jmaa.2011.04.046. |
[25] |
_______, The nature of Hopf bifurcation for the Gompertz model with delays, Math. and Comp. Modelling, 54 (2011), 2183-2198.
doi: 10.1016/j.mcm.2011.05.027. |
[26] |
A. Świerniak, Comparison of six models of antiangiogenic therapy, Appl. Math., 36 (2009), 333-348. |
[27] |
A. Świerniak, A. Gala, A. Gandolfi and A. d'Onofrio, Optimalization of anti-angiogenic therapy as optimal control problem, in "Proc: IASTED Biomechanics 2006" Actapress, (2006). |
[28] |
H. Ch. Wu, Ch. T. Huang and D. K. Chang, Anti-angiogenic therapeutic drugs for treatment of human cancer, J. Cancer Mol. 4 (2008), 37-45. |
[1] |
Zvia Agur, L. Arakelyan, P. Daugulis, Y. Ginosar. Hopf point analysis for angiogenesis models. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 29-38. doi: 10.3934/dcdsb.2004.4.29 |
[2] |
R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure and Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147 |
[3] |
Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026 |
[4] |
Shubo Zhao, Ping Liu, Mingchao Jiang. Stability and bifurcation analysis in a chemotaxis bistable growth system. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1165-1174. doi: 10.3934/dcdss.2017063 |
[5] |
Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445 |
[6] |
Philip Gerlee, Alexander R. A. Anderson. Diffusion-limited tumour growth: Simulations and analysis. Mathematical Biosciences & Engineering, 2010, 7 (2) : 385-400. doi: 10.3934/mbe.2010.7.385 |
[7] |
Sun Yi, Patrick W. Nelson, A. Galip Ulsoy. Delay differential equations via the matrix lambert w function and bifurcation analysis: application to machine tool chatter. Mathematical Biosciences & Engineering, 2007, 4 (2) : 355-368. doi: 10.3934/mbe.2007.4.355 |
[8] |
Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457 |
[9] |
Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031 |
[10] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[11] |
Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521 |
[12] |
Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115 |
[13] |
Yanqiang Chang, Huabin Chen. Stability analysis of stochastic delay differential equations with Markovian switching driven by Lévy noise. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021301 |
[14] |
Leonid Shaikhet. Stability of equilibriums of stochastically perturbed delay differential neoclassical growth model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1565-1573. doi: 10.3934/dcdsb.2017075 |
[15] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[16] |
Yaodan Huang, Zhengce Zhang, Bei Hu. Bifurcation from stability to instability for a free boundary tumor model with angiogenesis. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2473-2510. doi: 10.3934/dcds.2019105 |
[17] |
Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361 |
[18] |
Bing Zeng, Pei Yu. A hierarchical parametric analysis on Hopf bifurcation of an epidemic model. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022069 |
[19] |
Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577 |
[20] |
Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]