-
Previous Article
A Cellular Potts model simulating cell migration on and in matrix environments
- MBE Home
- This Issue
-
Next Article
Genome characterization through dichotomic classes: An analysis of the whole chromosome 1 of A. thaliana
Mathematical analysis and simulations involving chemotherapy and surgery on large human tumours under a suitable cell-kill functional response
1. | Universidade de São Paulo, Depto de Matemática Aplicada e Estatística, ICMC, USP, 13560-970, São Carlos, Brazil |
2. | Universidade Estadual Paulista, Depto de Bioestatística, IBB, UNESP, 18618-970, Botucatu, Brazil |
References:
[1] |
R. E. Bellman., "Mathematical Methods in Medicine,'' World Scientific Publishing Co. Inc., River Edge, 1983. |
[2] |
T. Browder, C. E. Butterfield, B. M. Kraling, B. Shi, B. Marshall, M. S. O'Reilly and J. Folkman, Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer, Cancer Res., 60 (2000), 1878-1886. |
[3] |
R. N. Buick, Cellular basis of chemotherapy, in "Cancer Chemotherapy Handbook'' (Ed. R. T. Dorr and D. D. V. Hoff), Appleton & Lange, (1994), p.9. |
[4] |
L. G. de Pillis and A. E. Radunskaya, A mathematical tumor model model with immune resistance and drug therapy: An optimal control approach, J. Theor. Med., 3 (2001), 79-100.
doi: 10.1080/10273660108833067. |
[5] |
L. G. de Pillis, W. Gu, K. R. Fister, T. Head, K. Maples, A. Murugan, T. Neal and K. Yoshida, Chemotherapy for tumors: Analysis of the dynamics and a study of quadratic and linear optimal controls, Math. Biosc., 209 (2007), 292-315.
doi: 10.1016/j.mbs.2006.05.003. |
[6] |
A. D'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, An optimal delivery of combination therapy for tumors, Math. Biosc., 222 (2009), 13-26.
doi: 10.1016/j.mbs.2009.08.004. |
[7] |
R. T. Dorr and D. D. Von Hoff, "Cancer Chemotherapy Handbook,'' McGraw-Hill, 1994. |
[8] |
FEC100 chemotherapy for breast cancer (Written by Jeremy Braybrooke)., Document number: ASWCS09 BR006 [internet] accessed 27/07/2011, available from , ().
|
[9] |
{N. Ferrara and H. P. Gerber}, The role of vascular endothelial growth factor in angiogenesis, Acta Haematol., 106 (2001), 148-156.
doi: 10.1159/000046610. |
[10] |
K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies, SIAM J. Appl. Math., 63 (2003), 1954-1971.
doi: 10.1137/S0036139902413489. |
[11] |
R. A. Gatenby, Application of competition theory to tumour growth: Implications for tumour biology and treatment, Eur. J. Cancer, 32A (1996), 722-726.
doi: 10.1016/0959-8049(95)00658-3. |
[12] |
R. S. Kerbel, Tumour angiogenesis: Past, present and the near future, Carcinogenesis, 21 (2000), 505-515.
doi: 10.1093/carcin/21.3.505. |
[13] |
M. Kohandel, S. Sivaloganathan and A. Oza, Mathematical modeling of ovarian cancer treatments: Sequencing of surgery and chemotherapy, J. Theor. Biol., 242 (2006), 62-68.
doi: 10.1016/j.jtbi.2006.02.001. |
[14] |
L. G. Marcu and E. Bezak, Neoadjuvant cisplatin for head and neck cancer: simulation of a novel schedule for improved therapeutic ratio, J. Theor. Biol., 297 (2012), 41-47.
doi: 10.1016/j.jtbi.2011.12.001. |
[15] |
R. B. Martin, M. E. Fisher, R. F. Minchin and K. L. Teo, Low-intensity combination chemotherapy maximizes host survival time for tumors containing drug-resistant cells, Math. Biosc., 110 (1992), 221-252.
doi: 10.1016/0025-5564(92)90039-Y. |
[16] |
R. B. Martin and K. L. Teo, "Optimal Control of Drug Administration in Cancer Chemotherapy,'' World Scientific, 1994. |
[17] |
R. B. Martin, Optimal control drug scheduling of cancer chemotherapy, Automatica 28 (1992), 113-1123.
doi: 10.1016/0005-1098(92)90054-J. |
[18] |
MeadJohnson Oncology Products [internet], http://patient.cancerconsultants.com/druginserts/Cyclophosphamide.pdf., accessed 29/02/2012., ().
|
[19] |
R. D. Mosteller, Simplified calculation of body surface area, N. Engl. J. Med., (1987), 1098. |
[20] |
S. Mukherjee, "The Emperor of All Maladies: A Biography of Cancer,'' Scribner, 2010. |
[21] |
F. Nani and H. I. Freedman, A mathematical model of cancer treatment by immunotherapy, Math. Biosc., 163 (2000), 159-199.
doi: 10.1016/S0025-5564(99)00058-9. |
[22] |
L. Norton and R. Simon, The Norton-Simon hypothesis revisited, Cancer Treat. Rep., 70 (1986), 163-169. |
[23] |
S. T. R. Pinho, H. I. Freedman and F. K. Nani, A chemotherapy model for the treatment of cancer with metastasis, Math. Comp. Model., 36 (2002), 773-803.
doi: 10.1016/S0895-7177(02)00227-3. |
[24] |
S. T. R. Pinho, F. S. Bacelar, R. F. S. Andrade and H. I. Freedman, A mathematical model for the effect of anti-angiogenic therapy in the treatment of cancer tumours by chemotherapy, Nonlin. Anal.: Real World Appl., 14 (2013), 815-828.
doi: 10.1016/j.nonrwa.2012.07.034. |
[25] |
D. S. Rodrigues, S. T. R. Pinho and P. F. A. Mancera, Um modelo matemático em quimio-terapia, TEMA, 13 (2012), 1-12 (in portuguese).
doi: 10.5540/tema.2012.013.01.0001. |
[26] |
D. S. Rodrigues, P. F. A. Mancera and S. T. R. Pinho, Accessing the effect of metronomic chemotherapy through a simple mathematical model,, 2012, ().
|
[27] |
F. M. Schaebel, Concepts for systematic treatment of micrometastases, Cancer, 35 (1975), 15-24.
doi: 10.1002/1097-0142(197501)35:1<15::AID-CNCR2820350104>3.0.CO;2-W. |
[28] |
H. E. Skipper, F. M. Schaebel-Jr. and W. S. Wilcox, Experimental evaluation of potential anticancer agents XIII: on the criteria and kinetics associated with curability of experimental leukemia, Cancer Chemother. Rep., 35 (1964), 1-111. |
[29] |
J. S. Spratt, J. S. Meyer and J. A. Spratt, Rates of growth of human neoplasms: part II, J. Surg. Oncol., 61 (1996), 68-73.
doi: 10.1002/1096-9098(199601)61:1<68::AID-JSO2930610102>3.0.CO;2-E. |
[30] |
G. S. Stamatakos, E. A. Kolokotroni, D. D. Dionysiou, E. C. Georgiadi and C. Desmedt, An advanced discrete state-discrete event multiscale simulation model of the response of a solid tumour to chemotherapy: mimicking a clinical study, J. Theor. Biol., 266 (2010), 124-139.
doi: 10.1016/j.jtbi.2010.05.019. |
[31] |
V. G. Vaidya and F. J. Alexandro Jr., Evaluation of some mathematical models for tumor growth, Int. J. Biom. Comput., 13 (1982), 19-35.
doi: 10.1016/0020-7101(82)90048-4. |
[32] |
World Health Organization, http://www.who.int/cancer/en/, accessed 02/03/2012., ().
|
[33] |
R. A. Weinberg, "The Biology of Cancer,'' Garland Science, 2008. |
show all references
References:
[1] |
R. E. Bellman., "Mathematical Methods in Medicine,'' World Scientific Publishing Co. Inc., River Edge, 1983. |
[2] |
T. Browder, C. E. Butterfield, B. M. Kraling, B. Shi, B. Marshall, M. S. O'Reilly and J. Folkman, Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer, Cancer Res., 60 (2000), 1878-1886. |
[3] |
R. N. Buick, Cellular basis of chemotherapy, in "Cancer Chemotherapy Handbook'' (Ed. R. T. Dorr and D. D. V. Hoff), Appleton & Lange, (1994), p.9. |
[4] |
L. G. de Pillis and A. E. Radunskaya, A mathematical tumor model model with immune resistance and drug therapy: An optimal control approach, J. Theor. Med., 3 (2001), 79-100.
doi: 10.1080/10273660108833067. |
[5] |
L. G. de Pillis, W. Gu, K. R. Fister, T. Head, K. Maples, A. Murugan, T. Neal and K. Yoshida, Chemotherapy for tumors: Analysis of the dynamics and a study of quadratic and linear optimal controls, Math. Biosc., 209 (2007), 292-315.
doi: 10.1016/j.mbs.2006.05.003. |
[6] |
A. D'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, An optimal delivery of combination therapy for tumors, Math. Biosc., 222 (2009), 13-26.
doi: 10.1016/j.mbs.2009.08.004. |
[7] |
R. T. Dorr and D. D. Von Hoff, "Cancer Chemotherapy Handbook,'' McGraw-Hill, 1994. |
[8] |
FEC100 chemotherapy for breast cancer (Written by Jeremy Braybrooke)., Document number: ASWCS09 BR006 [internet] accessed 27/07/2011, available from , ().
|
[9] |
{N. Ferrara and H. P. Gerber}, The role of vascular endothelial growth factor in angiogenesis, Acta Haematol., 106 (2001), 148-156.
doi: 10.1159/000046610. |
[10] |
K. R. Fister and J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies, SIAM J. Appl. Math., 63 (2003), 1954-1971.
doi: 10.1137/S0036139902413489. |
[11] |
R. A. Gatenby, Application of competition theory to tumour growth: Implications for tumour biology and treatment, Eur. J. Cancer, 32A (1996), 722-726.
doi: 10.1016/0959-8049(95)00658-3. |
[12] |
R. S. Kerbel, Tumour angiogenesis: Past, present and the near future, Carcinogenesis, 21 (2000), 505-515.
doi: 10.1093/carcin/21.3.505. |
[13] |
M. Kohandel, S. Sivaloganathan and A. Oza, Mathematical modeling of ovarian cancer treatments: Sequencing of surgery and chemotherapy, J. Theor. Biol., 242 (2006), 62-68.
doi: 10.1016/j.jtbi.2006.02.001. |
[14] |
L. G. Marcu and E. Bezak, Neoadjuvant cisplatin for head and neck cancer: simulation of a novel schedule for improved therapeutic ratio, J. Theor. Biol., 297 (2012), 41-47.
doi: 10.1016/j.jtbi.2011.12.001. |
[15] |
R. B. Martin, M. E. Fisher, R. F. Minchin and K. L. Teo, Low-intensity combination chemotherapy maximizes host survival time for tumors containing drug-resistant cells, Math. Biosc., 110 (1992), 221-252.
doi: 10.1016/0025-5564(92)90039-Y. |
[16] |
R. B. Martin and K. L. Teo, "Optimal Control of Drug Administration in Cancer Chemotherapy,'' World Scientific, 1994. |
[17] |
R. B. Martin, Optimal control drug scheduling of cancer chemotherapy, Automatica 28 (1992), 113-1123.
doi: 10.1016/0005-1098(92)90054-J. |
[18] |
MeadJohnson Oncology Products [internet], http://patient.cancerconsultants.com/druginserts/Cyclophosphamide.pdf., accessed 29/02/2012., ().
|
[19] |
R. D. Mosteller, Simplified calculation of body surface area, N. Engl. J. Med., (1987), 1098. |
[20] |
S. Mukherjee, "The Emperor of All Maladies: A Biography of Cancer,'' Scribner, 2010. |
[21] |
F. Nani and H. I. Freedman, A mathematical model of cancer treatment by immunotherapy, Math. Biosc., 163 (2000), 159-199.
doi: 10.1016/S0025-5564(99)00058-9. |
[22] |
L. Norton and R. Simon, The Norton-Simon hypothesis revisited, Cancer Treat. Rep., 70 (1986), 163-169. |
[23] |
S. T. R. Pinho, H. I. Freedman and F. K. Nani, A chemotherapy model for the treatment of cancer with metastasis, Math. Comp. Model., 36 (2002), 773-803.
doi: 10.1016/S0895-7177(02)00227-3. |
[24] |
S. T. R. Pinho, F. S. Bacelar, R. F. S. Andrade and H. I. Freedman, A mathematical model for the effect of anti-angiogenic therapy in the treatment of cancer tumours by chemotherapy, Nonlin. Anal.: Real World Appl., 14 (2013), 815-828.
doi: 10.1016/j.nonrwa.2012.07.034. |
[25] |
D. S. Rodrigues, S. T. R. Pinho and P. F. A. Mancera, Um modelo matemático em quimio-terapia, TEMA, 13 (2012), 1-12 (in portuguese).
doi: 10.5540/tema.2012.013.01.0001. |
[26] |
D. S. Rodrigues, P. F. A. Mancera and S. T. R. Pinho, Accessing the effect of metronomic chemotherapy through a simple mathematical model,, 2012, ().
|
[27] |
F. M. Schaebel, Concepts for systematic treatment of micrometastases, Cancer, 35 (1975), 15-24.
doi: 10.1002/1097-0142(197501)35:1<15::AID-CNCR2820350104>3.0.CO;2-W. |
[28] |
H. E. Skipper, F. M. Schaebel-Jr. and W. S. Wilcox, Experimental evaluation of potential anticancer agents XIII: on the criteria and kinetics associated with curability of experimental leukemia, Cancer Chemother. Rep., 35 (1964), 1-111. |
[29] |
J. S. Spratt, J. S. Meyer and J. A. Spratt, Rates of growth of human neoplasms: part II, J. Surg. Oncol., 61 (1996), 68-73.
doi: 10.1002/1096-9098(199601)61:1<68::AID-JSO2930610102>3.0.CO;2-E. |
[30] |
G. S. Stamatakos, E. A. Kolokotroni, D. D. Dionysiou, E. C. Georgiadi and C. Desmedt, An advanced discrete state-discrete event multiscale simulation model of the response of a solid tumour to chemotherapy: mimicking a clinical study, J. Theor. Biol., 266 (2010), 124-139.
doi: 10.1016/j.jtbi.2010.05.019. |
[31] |
V. G. Vaidya and F. J. Alexandro Jr., Evaluation of some mathematical models for tumor growth, Int. J. Biom. Comput., 13 (1982), 19-35.
doi: 10.1016/0020-7101(82)90048-4. |
[32] |
World Health Organization, http://www.who.int/cancer/en/, accessed 02/03/2012., ().
|
[33] |
R. A. Weinberg, "The Biology of Cancer,'' Garland Science, 2008. |
[1] |
Luis A. Fernández, Cecilia Pola. Optimal control problems for the Gompertz model under the Norton-Simon hypothesis in chemotherapy. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2577-2612. doi: 10.3934/dcdsb.2018266 |
[2] |
Ismail Abdulrashid, Xiaoying Han. A mathematical model of chemotherapy with variable infusion. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1875-1890. doi: 10.3934/cpaa.2020082 |
[3] |
Juan Pablo Aparicio, Carlos Castillo-Chávez. Mathematical modelling of tuberculosis epidemics. Mathematical Biosciences & Engineering, 2009, 6 (2) : 209-237. doi: 10.3934/mbe.2009.6.209 |
[4] |
Urszula Ledzewicz, Behrooz Amini, Heinz Schättler. Dynamics and control of a mathematical model for metronomic chemotherapy. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1257-1275. doi: 10.3934/mbe.2015.12.1257 |
[5] |
Hsiu-Chuan Wei. Mathematical and numerical analysis of a mathematical model of mixed immunotherapy and chemotherapy of cancer. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1279-1295. doi: 10.3934/dcdsb.2016.21.1279 |
[6] |
Geoffrey Beck, Sebastien Imperiale, Patrick Joly. Mathematical modelling of multi conductor cables. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 521-546. doi: 10.3934/dcdss.2015.8.521 |
[7] |
Nirav Dalal, David Greenhalgh, Xuerong Mao. Mathematical modelling of internal HIV dynamics. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 305-321. doi: 10.3934/dcdsb.2009.12.305 |
[8] |
Oliver Penrose, John W. Cahn. On the mathematical modelling of cellular (discontinuous) precipitation. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 963-982. doi: 10.3934/dcds.2017040 |
[9] |
Joseph Malinzi, Rachid Ouifki, Amina Eladdadi, Delfim F. M. Torres, K. A. Jane White. Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1435-1463. doi: 10.3934/mbe.2018066 |
[10] |
Marek Bodnar, Monika Joanna Piotrowska, Magdalena Urszula Bogdańska. Mathematical analysis of a generalised model of chemotherapy for low grade gliomas. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2149-2167. doi: 10.3934/dcdsb.2019088 |
[11] |
Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1223-1240. doi: 10.3934/mbe.2016040 |
[12] |
Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier. On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences & Engineering, 2017, 14 (1) : 217-235. doi: 10.3934/mbe.2017014 |
[13] |
Liumei Wu, Baojun Song, Wen Du, Jie Lou. Mathematical modelling and control of echinococcus in Qinghai province, China. Mathematical Biosciences & Engineering, 2013, 10 (2) : 425-444. doi: 10.3934/mbe.2013.10.425 |
[14] |
Roderick Melnik, B. Lassen, L. C Lew Yan Voon, M. Willatzen, C. Galeriu. Accounting for nonlinearities in mathematical modelling of quantum dot molecules. Conference Publications, 2005, 2005 (Special) : 642-651. doi: 10.3934/proc.2005.2005.642 |
[15] |
Luis L. Bonilla, Vincenzo Capasso, Mariano Alvaro, Manuel Carretero, Filippo Terragni. On the mathematical modelling of tumor-induced angiogenesis. Mathematical Biosciences & Engineering, 2017, 14 (1) : 45-66. doi: 10.3934/mbe.2017004 |
[16] |
M.A.J Chaplain, G. Lolas. Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Networks and Heterogeneous Media, 2006, 1 (3) : 399-439. doi: 10.3934/nhm.2006.1.399 |
[17] |
Luigi Barletti, Giovanni Nastasi, Claudia Negulescu, Vittorio Romano. Mathematical modelling of charge transport in graphene heterojunctions. Kinetic and Related Models, 2021, 14 (3) : 407-427. doi: 10.3934/krm.2021010 |
[18] |
Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa. A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences & Engineering, 2005, 2 (4) : 811-832. doi: 10.3934/mbe.2005.2.811 |
[19] |
Urszula Ledzewicz, Helmut Maurer, Heinz Schättler. Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy. Mathematical Biosciences & Engineering, 2011, 8 (2) : 307-323. doi: 10.3934/mbe.2011.8.307 |
[20] |
Urszula Ledzewicz, Mozhdeh Sadat Faraji Mosalman, Heinz Schättler. Optimal controls for a mathematical model of tumor-immune interactions under targeted chemotherapy with immune boost. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : 1031-1051. doi: 10.3934/dcdsb.2013.18.1031 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]