2013, 10(2): 345-367. doi: 10.3934/mbe.2013.10.345

Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey

1. 

Grupo de Ecología Matemática, Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile, Chile, Chile

2. 

Department of Mathematics, The University of South Dakota, Vermillion, SD 57069-2390, United States

Received  October 2011 Revised  August 2012 Published  January 2013

The main purpose of this work is to analyze a Gause type predator-prey model in which two ecological phenomena are considered: the Allee effect affecting the prey growth function and the formation of group defence by prey in order to avoid the predation.
    We prove the existence of a separatrix curves in the phase plane, determined by the stable manifold of the equilibrium point associated to the Allee effect, implying that the solutions are highly sensitive to the initial conditions.
    Trajectories starting at one side of this separatrix curve have the equilibrium point $(0,0)$ as their $\omega $-limit, while trajectories starting at the other side will approach to one of the following three attractors: a stable limit cycle, a stable coexistence point or the stable equilibrium point $(K,0)$ in which the predators disappear and prey attains their carrying capacity.
    We obtain conditions on the parameter values for the existence of one or two positive hyperbolic equilibrium points and the existence of a limit cycle surrounding one of them. Both ecological processes under study, namely the nonmonotonic functional response and the Allee effect on prey, exert a strong influence on the system dynamics, resulting in multiple domains of attraction.
    Using Liapunov quantities we demonstrate the uniqueness of limit cycle, which constitutes one of the main differences with the model where the Allee effect is not considered. Computer simulations are also given in support of the conclusions.
Citation: Eduardo González-Olivares, Betsabé González-Yañez, Jaime Mena-Lorca, José D. Flores. Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey. Mathematical Biosciences & Engineering, 2013, 10 (2) : 345-367. doi: 10.3934/mbe.2013.10.345
References:
[1]

A. Aguilera-Moya and E. González-Olivares, A Gause type model with a generalized class of nonmonotonic functional response, in "Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology" (ed. R. Mondaini ), E-Papers Serviços Editoriais Ltda, Río de Janeiro, 2 (2004), 206-217.

[2]

P. Aguirre, E. González-Olivares and E. Sáez, Three limit cycles in a Leslie-Gower predator-prey model with additive Allee effect, SIAM Journal on Applied Mathematics, 69 (2009), 1244-1262. doi: 10.1137/070705210.

[3]

D. K. Arrowsmith and C. M. Place, "Dynamical Systems. Differential Equations, Maps and Chaotic Behaviour," Chapman and Hall, 1992.

[4]

A. D. Bazykin, "Nonlinear Dynamics of Interacting Populations," World Scientific, 1998. doi: 10.1142/9789812798725.

[5]

L. Berec, E. Angulo and F. Courchamp, Multiple Allee effects and population management, Trends in Ecology and Evolution, 22 (2007), 185-191.

[6]

D. S. Boukal and L. Berec, Single-species models and the Allee effect: Extinction boundaries, sex ratios and mate encounters, Journal of Theoretical Biology, 218 (2002), 375-394. doi: 10.1006/jtbi.2002.3084.

[7]

C. Chicone, "Ordinary Differential Equations with Applications," (2nd edition), Texts in Applied Mathematics 34, Springer, 2006.

[8]

C. W. Clark, "Mathematical Bioeconomic: The Optimal Management of Renewable Resources," (2nd edition), John Wiley and Sons, 1990.

[9]

C. W. Clark, "The Worldwide Crisis in Fisheries: Economic Model and Human Behavior," Cambridge University Press, 2007.

[10]

C. S. Coleman, Hilbert's 16th. problem: How many cycles?, in "Differential Equations Model" (eds. M. Braun, C. S. Coleman and D. Drew ), Springer Verlag, (1983), 279-297.

[11]

J. B. Collings, The effect of the functional response on the bifurcation behavior of a mite predator-prey interaction model, Journal of Mathematical Biology, 36 (1997), 149-168. doi: 10.1007/s002850050095.

[12]

E. D. Conway and J. A. Smoller, Global analysis of a system of predator-prey equations, SIAM Journal on Applied Mathematics, 46 (1986), 630-642. doi: 10.1137/0146043.

[13]

F. Courchamp, T. Clutton-Brock and B. Grenfell, Inverse dependence and the Allee effect, Trends in Ecology and Evolution, 14 (1999), 405-410.

[14]

F. Courchamp, L. Berec and J. Gascoigne, "Allee effects in Ecology and Conservation," Oxford University Press, 2008.

[15]

F. Dumortier, J. Llibre and J. C. Artés, "Qualitative Ttheory of Planar Differential Systems," Springer, 2006.

[16]

H. I. Freedman, "Deterministic Mathematical Model in Population Ecology," Marcel Dekker, 1980.

[17]

H. I. Freedman and G. S. K. Wolkowicz, Predator-prey systems with group defence: The paradox of enrichment revisted, Bulletin of Mathematical Biology, 48 (1986), 493-508. doi: 10.1016/S0092-8240(86)90004-2.

[18]

V. A. Gaiko, "Global Bifurcation Theory and Hilbert's Sixteenth Problem," Mathematics an its applications, 559, Kluwer Academic Publishers, 2003.

[19]

J. C. Gascoigne and R. N. Lipcius, Allee effects driven by predation, Journal of Applied Ecology, 41 (2004), 801-810.

[20]

E. González-Olivares, B. González-Yañez, E. Sáez and I. Szantó, On the number of limit cycles in a predator prey model with non-monotonic functional response, Discrete and Continuous Dynamical Systems, 6 (2006), 525-534. doi: 10.3934/dcdsb.2006.6.525.

[21]

E. González-Olivares, B. González-Yañez, J. Mena-Lorca and R. Ramos-Jiliberto, Modelling the Allee effect: Are the different mathematical forms proposed equivalents?, in "Proceedings of the 2006 International Symposium on Mathematical and Computational Biology" (ed. R. Mondaini), E-papers Serviços Editoriais Ltda. Rio de Janeiro, (2007), 53-71.

[22]

E. González-Olivares, H. Meneses-Alcay, B. González-Yañez, J. Mena-Lorca, A. Rojas-Palma and R. Ramos-Jiliberto, Multiple stability and uniqueness of limit cycle in a Gause-type predator-prey model considering Allee effect on prey, Nonlinear Analysis: Real World and Applications, 12 (2011), 2931-2942. doi: 10.1016/j.nonrwa.2011.04.003.

[23]

E. González-Olivares and A. Rojas-Palma, Multiple limit cycles in a Gause type predator-prey model with Holling type III functional response and Allee effect on prey, Bulletin of Mathematical Biology, 73 (2011), 1378-1397. doi: 10.1007/s11538-010-9577-5.

[24]

E. González-Olivares, J. Mena-Lorca, A. Rojas-Palma and J. D. Flores, Dynamical complexities in the Leslie-Gower predator-prey model considering a simple form to the Allee effect on prey, Applied Mathematical Modelling, 35 (2011), 366-381. doi: 10.1016/j.apm.2010.07.001.

[25]

B. González-Yañez and E. González-Olivares, Consequences of Allee effect on a Gause type predator-prey model with nonmonotonic functional response, in "Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology" (ed. R. Mondaini), E-Papers Serviços Editoriais Ltda, Río de Janeiro, 2 (2004), 358-373.

[26]

K. Hasík, On a predator-prey system of Gause type, Journal of Mathematical Biology, 60 (2010), 59-74. doi: 10.1007/s00285-009-0257-8.

[27]

M. Kot, "Elementary Mathematical Ecology," Cambridge University Press, 2001. doi: 10.1017/CBO9780511608520.

[28]

Y. Kuang and H. I. Freedman, Uniqueness of limit cycles in Gause-type models of predator-prey systems, Mathematical Biosciences, 88 (1988), 67-84. doi: 10.1016/0025-5564(88)90049-1.

[29]

M. Liermann and R. Hilborn, Depensation: Evidence, models and implications, Fish and Fisheries, 2 (2001), 33-58.

[30]

L. Perko, "Differential Equations and Dynamical Systems," (3rd ed), Texts in Applied Mathematics 7, Springer-Verlag, 2001.

[31]

A. Rojas-Palma, E. González-Olivares and B. González-Yañez, Metastability in a Gause type predator-prey models with sigmoid functional response and multiplicative Allee effect on prey, in "Proceedings of the 2006 International Symposium on Mathematical and Computational Biology" (ed. R. Mondaini), E-papers Serviços Editoriais Ltda., (2007), 295-321.

[32]

S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM Journal of Applied Mathematics, 61 (2001), 1445-1472. doi: 10.1137/S0036139999361896.

[33]

P. A. Stephens and W. J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation, Trends in Ecology and Evolution, 14 (1999), 401-405.

[34]

P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect?, Oikos, 87 (1999), 185-190.

[35]

R. J. Taylor, "Predation," Chapman and Hall, 1984.

[36]

P. Turchin, "Complex Population Dynamics. A Theoretical/Empirical Synthesis," Monographs in Population Biology 35, Princeton University Press, 2003.

[37]

G. A. K. van Voorn, L. Hemerik, M. P. Boer and B. W. Kooi, Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect, Mathematical Biosciences, 209 (2007), 451-469. doi: 10.1016/j.mbs.2007.02.006.

[38]

S. Véliz-Retamales and E. González-Olivares, Dynamics of a Gause type prey-predator model with a rational nonmonotonic consumption function, in "Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology" (ed. R. Mondaini), E-Papers Serviços Editoriais Ltda, Río de Janeiro, 2 (2004), 181-192.

[39]

J. Wang, J. Shi and J. Wei, Predator-prey system with strong Allee effect in prey, Journal of Mathematical Biology, 62 (2011), 291-331. doi: 10.1007/s00285-010-0332-1.

[40]

S. Wolfram, "Mathematica: A System for Doing Mathematics by Computer," (2nd edition), Wolfram Research, Addison Wesley, 1991.

[41]

G. S. W. Wolkowicz, Bifurcation analysis of a predator-prey system involving group defense, SIAM Journal on Applied Mathematics, 48 (1988), 592-606. doi: 10.1137/0148033.

[42]

D. Xiao and S. Ruan, Bifurcations in a predator-prey system with group defense, International Journal of Bifurcation and Chaos, 11 (2001), 2123-2131. doi: 10.1142/S021812740100336X.

[43]

D. Xiao and Z. Zhang, On the uniquenes and nonexsitence of limit cycles for predator-prey systems, Nonlinearity, 16 (2003), 1185-1201. doi: 10.1088/0951-7715/16/3/321.

[44]

H. Zhu, S. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic functional response, SIAM Journal on Applied Mathematics, 63 (2002), 636-682. doi: 10.1137/S0036139901397285.

[45]

J. Zu and M. Mimura, The impact of Allee effect on a predator-prey system with Holling type II functional response, Applied Mathematics and Computation, 217 (2010), 3542-3556. doi: 10.1016/j.amc.2010.09.029.

show all references

References:
[1]

A. Aguilera-Moya and E. González-Olivares, A Gause type model with a generalized class of nonmonotonic functional response, in "Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology" (ed. R. Mondaini ), E-Papers Serviços Editoriais Ltda, Río de Janeiro, 2 (2004), 206-217.

[2]

P. Aguirre, E. González-Olivares and E. Sáez, Three limit cycles in a Leslie-Gower predator-prey model with additive Allee effect, SIAM Journal on Applied Mathematics, 69 (2009), 1244-1262. doi: 10.1137/070705210.

[3]

D. K. Arrowsmith and C. M. Place, "Dynamical Systems. Differential Equations, Maps and Chaotic Behaviour," Chapman and Hall, 1992.

[4]

A. D. Bazykin, "Nonlinear Dynamics of Interacting Populations," World Scientific, 1998. doi: 10.1142/9789812798725.

[5]

L. Berec, E. Angulo and F. Courchamp, Multiple Allee effects and population management, Trends in Ecology and Evolution, 22 (2007), 185-191.

[6]

D. S. Boukal and L. Berec, Single-species models and the Allee effect: Extinction boundaries, sex ratios and mate encounters, Journal of Theoretical Biology, 218 (2002), 375-394. doi: 10.1006/jtbi.2002.3084.

[7]

C. Chicone, "Ordinary Differential Equations with Applications," (2nd edition), Texts in Applied Mathematics 34, Springer, 2006.

[8]

C. W. Clark, "Mathematical Bioeconomic: The Optimal Management of Renewable Resources," (2nd edition), John Wiley and Sons, 1990.

[9]

C. W. Clark, "The Worldwide Crisis in Fisheries: Economic Model and Human Behavior," Cambridge University Press, 2007.

[10]

C. S. Coleman, Hilbert's 16th. problem: How many cycles?, in "Differential Equations Model" (eds. M. Braun, C. S. Coleman and D. Drew ), Springer Verlag, (1983), 279-297.

[11]

J. B. Collings, The effect of the functional response on the bifurcation behavior of a mite predator-prey interaction model, Journal of Mathematical Biology, 36 (1997), 149-168. doi: 10.1007/s002850050095.

[12]

E. D. Conway and J. A. Smoller, Global analysis of a system of predator-prey equations, SIAM Journal on Applied Mathematics, 46 (1986), 630-642. doi: 10.1137/0146043.

[13]

F. Courchamp, T. Clutton-Brock and B. Grenfell, Inverse dependence and the Allee effect, Trends in Ecology and Evolution, 14 (1999), 405-410.

[14]

F. Courchamp, L. Berec and J. Gascoigne, "Allee effects in Ecology and Conservation," Oxford University Press, 2008.

[15]

F. Dumortier, J. Llibre and J. C. Artés, "Qualitative Ttheory of Planar Differential Systems," Springer, 2006.

[16]

H. I. Freedman, "Deterministic Mathematical Model in Population Ecology," Marcel Dekker, 1980.

[17]

H. I. Freedman and G. S. K. Wolkowicz, Predator-prey systems with group defence: The paradox of enrichment revisted, Bulletin of Mathematical Biology, 48 (1986), 493-508. doi: 10.1016/S0092-8240(86)90004-2.

[18]

V. A. Gaiko, "Global Bifurcation Theory and Hilbert's Sixteenth Problem," Mathematics an its applications, 559, Kluwer Academic Publishers, 2003.

[19]

J. C. Gascoigne and R. N. Lipcius, Allee effects driven by predation, Journal of Applied Ecology, 41 (2004), 801-810.

[20]

E. González-Olivares, B. González-Yañez, E. Sáez and I. Szantó, On the number of limit cycles in a predator prey model with non-monotonic functional response, Discrete and Continuous Dynamical Systems, 6 (2006), 525-534. doi: 10.3934/dcdsb.2006.6.525.

[21]

E. González-Olivares, B. González-Yañez, J. Mena-Lorca and R. Ramos-Jiliberto, Modelling the Allee effect: Are the different mathematical forms proposed equivalents?, in "Proceedings of the 2006 International Symposium on Mathematical and Computational Biology" (ed. R. Mondaini), E-papers Serviços Editoriais Ltda. Rio de Janeiro, (2007), 53-71.

[22]

E. González-Olivares, H. Meneses-Alcay, B. González-Yañez, J. Mena-Lorca, A. Rojas-Palma and R. Ramos-Jiliberto, Multiple stability and uniqueness of limit cycle in a Gause-type predator-prey model considering Allee effect on prey, Nonlinear Analysis: Real World and Applications, 12 (2011), 2931-2942. doi: 10.1016/j.nonrwa.2011.04.003.

[23]

E. González-Olivares and A. Rojas-Palma, Multiple limit cycles in a Gause type predator-prey model with Holling type III functional response and Allee effect on prey, Bulletin of Mathematical Biology, 73 (2011), 1378-1397. doi: 10.1007/s11538-010-9577-5.

[24]

E. González-Olivares, J. Mena-Lorca, A. Rojas-Palma and J. D. Flores, Dynamical complexities in the Leslie-Gower predator-prey model considering a simple form to the Allee effect on prey, Applied Mathematical Modelling, 35 (2011), 366-381. doi: 10.1016/j.apm.2010.07.001.

[25]

B. González-Yañez and E. González-Olivares, Consequences of Allee effect on a Gause type predator-prey model with nonmonotonic functional response, in "Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology" (ed. R. Mondaini), E-Papers Serviços Editoriais Ltda, Río de Janeiro, 2 (2004), 358-373.

[26]

K. Hasík, On a predator-prey system of Gause type, Journal of Mathematical Biology, 60 (2010), 59-74. doi: 10.1007/s00285-009-0257-8.

[27]

M. Kot, "Elementary Mathematical Ecology," Cambridge University Press, 2001. doi: 10.1017/CBO9780511608520.

[28]

Y. Kuang and H. I. Freedman, Uniqueness of limit cycles in Gause-type models of predator-prey systems, Mathematical Biosciences, 88 (1988), 67-84. doi: 10.1016/0025-5564(88)90049-1.

[29]

M. Liermann and R. Hilborn, Depensation: Evidence, models and implications, Fish and Fisheries, 2 (2001), 33-58.

[30]

L. Perko, "Differential Equations and Dynamical Systems," (3rd ed), Texts in Applied Mathematics 7, Springer-Verlag, 2001.

[31]

A. Rojas-Palma, E. González-Olivares and B. González-Yañez, Metastability in a Gause type predator-prey models with sigmoid functional response and multiplicative Allee effect on prey, in "Proceedings of the 2006 International Symposium on Mathematical and Computational Biology" (ed. R. Mondaini), E-papers Serviços Editoriais Ltda., (2007), 295-321.

[32]

S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM Journal of Applied Mathematics, 61 (2001), 1445-1472. doi: 10.1137/S0036139999361896.

[33]

P. A. Stephens and W. J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation, Trends in Ecology and Evolution, 14 (1999), 401-405.

[34]

P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect?, Oikos, 87 (1999), 185-190.

[35]

R. J. Taylor, "Predation," Chapman and Hall, 1984.

[36]

P. Turchin, "Complex Population Dynamics. A Theoretical/Empirical Synthesis," Monographs in Population Biology 35, Princeton University Press, 2003.

[37]

G. A. K. van Voorn, L. Hemerik, M. P. Boer and B. W. Kooi, Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect, Mathematical Biosciences, 209 (2007), 451-469. doi: 10.1016/j.mbs.2007.02.006.

[38]

S. Véliz-Retamales and E. González-Olivares, Dynamics of a Gause type prey-predator model with a rational nonmonotonic consumption function, in "Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology" (ed. R. Mondaini), E-Papers Serviços Editoriais Ltda, Río de Janeiro, 2 (2004), 181-192.

[39]

J. Wang, J. Shi and J. Wei, Predator-prey system with strong Allee effect in prey, Journal of Mathematical Biology, 62 (2011), 291-331. doi: 10.1007/s00285-010-0332-1.

[40]

S. Wolfram, "Mathematica: A System for Doing Mathematics by Computer," (2nd edition), Wolfram Research, Addison Wesley, 1991.

[41]

G. S. W. Wolkowicz, Bifurcation analysis of a predator-prey system involving group defense, SIAM Journal on Applied Mathematics, 48 (1988), 592-606. doi: 10.1137/0148033.

[42]

D. Xiao and S. Ruan, Bifurcations in a predator-prey system with group defense, International Journal of Bifurcation and Chaos, 11 (2001), 2123-2131. doi: 10.1142/S021812740100336X.

[43]

D. Xiao and Z. Zhang, On the uniquenes and nonexsitence of limit cycles for predator-prey systems, Nonlinearity, 16 (2003), 1185-1201. doi: 10.1088/0951-7715/16/3/321.

[44]

H. Zhu, S. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic functional response, SIAM Journal on Applied Mathematics, 63 (2002), 636-682. doi: 10.1137/S0036139901397285.

[45]

J. Zu and M. Mimura, The impact of Allee effect on a predator-prey system with Holling type II functional response, Applied Mathematics and Computation, 217 (2010), 3542-3556. doi: 10.1016/j.amc.2010.09.029.

[1]

H. W. Broer, K. Saleh, V. Naudot, R. Roussarie. Dynamics of a predator-prey model with non-monotonic response function. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 221-251. doi: 10.3934/dcds.2007.18.221

[2]

E. González-Olivares, B. González-Yañez, Eduardo Sáez, I. Szántó. On the number of limit cycles in a predator prey model with non-monotonic functional response. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 525-534. doi: 10.3934/dcdsb.2006.6.525

[3]

Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1159-1167. doi: 10.3934/dcdsb.2019214

[4]

Johan Matheus Tuwankotta, Eric Harjanto. Strange attractors in a predator–prey system with non-monotonic response function and periodic perturbation. Journal of Computational Dynamics, 2019, 6 (2) : 469-483. doi: 10.3934/jcd.2019024

[5]

Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065

[6]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[7]

Xiao He, Sining Zheng. Bifurcation analysis and dynamic behavior to a predator-prey model with Beddington-DeAngelis functional response and protection zone. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4641-4657. doi: 10.3934/dcdsb.2020117

[8]

Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75

[9]

Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607

[10]

Yanlin Zhang, Qi Cheng, Shengfu Deng. Qualitative structure of a discrete predator-prey model with nonmonotonic functional response. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022065

[11]

Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure and Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481

[12]

Tongtong Chen, Jixun Chu. Hopf bifurcation for a predator-prey model with age structure and ratio-dependent response function incorporating a prey refuge. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022082

[13]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[14]

Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893

[15]

Hongwei Yin, Xiaoyong Xiao, Xiaoqing Wen. Analysis of a Lévy-diffusion Leslie-Gower predator-prey model with nonmonotonic functional response. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2121-2151. doi: 10.3934/dcdsb.2018228

[16]

Sze-Bi Hsu, Tzy-Wei Hwang, Yang Kuang. Global dynamics of a Predator-Prey model with Hassell-Varley Type functional response. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 857-871. doi: 10.3934/dcdsb.2008.10.857

[17]

Xinhong Zhang, Qing Yang. Dynamical behavior of a stochastic predator-prey model with general functional response and nonlinear jump-diffusion. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3155-3175. doi: 10.3934/dcdsb.2021177

[18]

Wan-Tong Li, Yong-Hong Fan. Periodic solutions in a delayed predator-prey models with nonmonotonic functional response. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 175-185. doi: 10.3934/dcdsb.2007.8.175

[19]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

[20]

Liang Zhao, Jianhe Shen. Canards and homoclinic orbits in a slow-fast modified May-Holling-Tanner predator-prey model with weak multiple Allee effect. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022018

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (9)

[Back to Top]