2013, 10(3): 499-521. doi: 10.3934/mbe.2013.10.499

A singularly perturbed SIS model with age structure

1. 

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban

2. 

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban 4041, South Africa

3. 

Institute of Applied Mathematics and Mechanics, University of Warsaw, Warsaw, Poland

Received  May 2012 Revised  August 2012 Published  April 2013

We present a preliminary study of an SIS model with a basic age structure and we focus on a disease with quick turnover, such as influenza or common cold. In such a case the difference between the characteristic demographic and epidemiological times naturally introduces two time scales in the model which makes it singularly perturbed. Using the Tikhonov theorem we prove that for certain classes of initial conditions the nonlinear structured SIS model can be approximated with very good accuracy by lower dimensional linear models.
Citation: Jacek Banasiak, Eddy Kimba Phongi, MirosŁaw Lachowicz. A singularly perturbed SIS model with age structure. Mathematical Biosciences & Engineering, 2013, 10 (3) : 499-521. doi: 10.3934/mbe.2013.10.499
References:
[1]

J. Banasiak and M. Lachowicz, Multiscale approach in mathematical biology. Comment on "Toward a mathematical theory of living systems focusing on developmental biology and evolution: A review and perspectives" by Bellomo and Carbonaro, Physics of Life Reviews, 8 (2011), 19-20.

[2]

J. Banasiak and M. Lachowicz, Methods of small parameter in mathematical biology and other applications,, preprint., (). 

[3]

J. Banasiak and M. Lachowicz, Singularly perturbed epidemiological models - behaviour close to non-isolated quasi steady states,, in preparation., (). 

[4]

N. Bellomo and B. Carbonaro, Toward a mathematical theory of living systems focusing on developmental biology and evolution: A review and perspectives, Physics of Life Reviews, 8 (2011), 1-18.

[5]

M. Braun, "Differential Equations and Their Applications," Springer-Verlag, New York, 1993.

[6]

J. Cronin, Electrically active cells and singular perturbation problems, Math. Intelligencer, 12 (1990), 57-64. doi: 10.1007/BF03024034.

[7]

D. J. D. Earn, A light introduction to modelling recurrent epidemics, in "Mathematical Epidemiology" (eds. F. Brauer, P. van den Driessche and J. Wu), LNM 1945, Springer, Berlin, (2008), 3-18. doi: 10.1007/978-3-540-78911-6_1.

[8]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differ. Equ., 31 (1979), 53-98. doi: 10.1016/0022-0396(79)90152-9.

[9]

G. Hek, Geometrical singular perturbation theory in biological practice, J. Math. Biol., 60 (2010), 347-386. doi: 10.1007/s00285-009-0266-7.

[10]

F. C. Hoppensteadt, Stability with parameter, J. Math. Anal. Appl., 18 (1967), 129-134.

[11]

C. K. R. T. Jones, Geometric singular perturbation theory, in "Dynamical Systems" (ed. R. Johnson), LNM 1609, Springer, Berlin, (1995), 44-118. doi: 10.1007/BFb0095239.

[12]

M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points fold and canard points in two dimensions, SIAM J. Math. Anal., 33 (2001), 286-314. doi: 10.1137/S0036141099360919.

[13]

M. Lachowicz, Links between microscopic and macroscopic descriptions, in "Multiscale Problems in the Life Sciences. From Microscopic to Macroscopic" (eds. V. Capasso and M. Lachowicz), LNM 1940, Springer, (2008), 201-68. doi: 10.1007/978-3-540-78362-6_4.

[14]

M. Lachowicz, Microscopic, mesoscopic and macroscopic descriptions of complex systems, Prob. Engin. Mech., 26 (2011), 54-60.

[15]

S. Muratori and S. Rinaldi, Low- and high-frequency oscillations in three-dimensional food chain systems, SIAM J. Appl. Math., 52 (1992), 1688-1706. doi: 10.1137/0152097.

[16]

J. D. Murray, "Mathematical Biology," Springer, New York, 2003. doi: 10.1007/b98869.

[17]

, "Common Cold Fact Sheet,", , (). 

[18]

S. Rinaldi and S. Muratori, Slow-fast limit cycles in predator-prey models, Ecol. Model., 6 (1992), 287-308.

[19]

D. Schanzer, J. Vachon and L. Pelletier, Age-specific differences in influenza a epidemic curves: Do children drive the spread of influenza epidemics?, 174 (2011), 109-117. doi: 10.1093/aje/kwr037.

[20]

L. A. Segel and M. Slemrod, The quasi-steady-state assumption: A case study in perturbation, SIAM Reviews, 31 (1989), 446-477. doi: 10.1137/1031091.

[21]

N. Siewe, "The Tikhonov Theorem In Multiscale Modelling: An Application To The SIRS Epidemic Model," African Institute of Mathematical Sciences Postgraduate Diploma Essay 2011/12, http://archive.aims.ac.za/2011-12.

[22]

Y. Sun, Z. Wang, Y. Zhang and J. Sundell, In China, students in crowded dormitories with a low ventilation rate have more common colds: Evidence for airborne transmission,, PLoS ONE, 6 ().  doi: 10.1371/journal.pone.0027140.

[23]

H. R. Thieme, "Mathematics in Population Biology," Princeton University Press, Princeton, 2003.

[24]

A. N. Tikhonov, A. B. Vasileva and A. G. Sveshnikov, "Differential Equations," Springer, Berlin, 1985. doi: 10.1007/978-3-642-82175-2.

[25]

A. B. Vasileva and V. F. Butuzov, "Asymptotic Expansions of Solutions of Singularly Perturbed Equations," Nauka, Moscow, 1973, in Russian.

[26]

A. B. Vasilieva and V. F. Butuzov, "Singularly Perturbed Equations in the Critical Cases," Moscow State University, 1978 (in Russian) (translation: Mathematical Research Center Technical Summary Report 2039, Madison, 1980).

[27]

A. B. Vasilieva, On the development of singular perturbation theory at Moscow State University and elsewhere, SIAM Review, 36 (1994), 440-452. doi: 10.1137/1036100.

[28]

F. Verhulst, "Methods and Applications of Singular Perturbations," Springer, New York, 2005. doi: 10.1007/0-387-28313-7.

show all references

References:
[1]

J. Banasiak and M. Lachowicz, Multiscale approach in mathematical biology. Comment on "Toward a mathematical theory of living systems focusing on developmental biology and evolution: A review and perspectives" by Bellomo and Carbonaro, Physics of Life Reviews, 8 (2011), 19-20.

[2]

J. Banasiak and M. Lachowicz, Methods of small parameter in mathematical biology and other applications,, preprint., (). 

[3]

J. Banasiak and M. Lachowicz, Singularly perturbed epidemiological models - behaviour close to non-isolated quasi steady states,, in preparation., (). 

[4]

N. Bellomo and B. Carbonaro, Toward a mathematical theory of living systems focusing on developmental biology and evolution: A review and perspectives, Physics of Life Reviews, 8 (2011), 1-18.

[5]

M. Braun, "Differential Equations and Their Applications," Springer-Verlag, New York, 1993.

[6]

J. Cronin, Electrically active cells and singular perturbation problems, Math. Intelligencer, 12 (1990), 57-64. doi: 10.1007/BF03024034.

[7]

D. J. D. Earn, A light introduction to modelling recurrent epidemics, in "Mathematical Epidemiology" (eds. F. Brauer, P. van den Driessche and J. Wu), LNM 1945, Springer, Berlin, (2008), 3-18. doi: 10.1007/978-3-540-78911-6_1.

[8]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differ. Equ., 31 (1979), 53-98. doi: 10.1016/0022-0396(79)90152-9.

[9]

G. Hek, Geometrical singular perturbation theory in biological practice, J. Math. Biol., 60 (2010), 347-386. doi: 10.1007/s00285-009-0266-7.

[10]

F. C. Hoppensteadt, Stability with parameter, J. Math. Anal. Appl., 18 (1967), 129-134.

[11]

C. K. R. T. Jones, Geometric singular perturbation theory, in "Dynamical Systems" (ed. R. Johnson), LNM 1609, Springer, Berlin, (1995), 44-118. doi: 10.1007/BFb0095239.

[12]

M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points fold and canard points in two dimensions, SIAM J. Math. Anal., 33 (2001), 286-314. doi: 10.1137/S0036141099360919.

[13]

M. Lachowicz, Links between microscopic and macroscopic descriptions, in "Multiscale Problems in the Life Sciences. From Microscopic to Macroscopic" (eds. V. Capasso and M. Lachowicz), LNM 1940, Springer, (2008), 201-68. doi: 10.1007/978-3-540-78362-6_4.

[14]

M. Lachowicz, Microscopic, mesoscopic and macroscopic descriptions of complex systems, Prob. Engin. Mech., 26 (2011), 54-60.

[15]

S. Muratori and S. Rinaldi, Low- and high-frequency oscillations in three-dimensional food chain systems, SIAM J. Appl. Math., 52 (1992), 1688-1706. doi: 10.1137/0152097.

[16]

J. D. Murray, "Mathematical Biology," Springer, New York, 2003. doi: 10.1007/b98869.

[17]

, "Common Cold Fact Sheet,", , (). 

[18]

S. Rinaldi and S. Muratori, Slow-fast limit cycles in predator-prey models, Ecol. Model., 6 (1992), 287-308.

[19]

D. Schanzer, J. Vachon and L. Pelletier, Age-specific differences in influenza a epidemic curves: Do children drive the spread of influenza epidemics?, 174 (2011), 109-117. doi: 10.1093/aje/kwr037.

[20]

L. A. Segel and M. Slemrod, The quasi-steady-state assumption: A case study in perturbation, SIAM Reviews, 31 (1989), 446-477. doi: 10.1137/1031091.

[21]

N. Siewe, "The Tikhonov Theorem In Multiscale Modelling: An Application To The SIRS Epidemic Model," African Institute of Mathematical Sciences Postgraduate Diploma Essay 2011/12, http://archive.aims.ac.za/2011-12.

[22]

Y. Sun, Z. Wang, Y. Zhang and J. Sundell, In China, students in crowded dormitories with a low ventilation rate have more common colds: Evidence for airborne transmission,, PLoS ONE, 6 ().  doi: 10.1371/journal.pone.0027140.

[23]

H. R. Thieme, "Mathematics in Population Biology," Princeton University Press, Princeton, 2003.

[24]

A. N. Tikhonov, A. B. Vasileva and A. G. Sveshnikov, "Differential Equations," Springer, Berlin, 1985. doi: 10.1007/978-3-642-82175-2.

[25]

A. B. Vasileva and V. F. Butuzov, "Asymptotic Expansions of Solutions of Singularly Perturbed Equations," Nauka, Moscow, 1973, in Russian.

[26]

A. B. Vasilieva and V. F. Butuzov, "Singularly Perturbed Equations in the Critical Cases," Moscow State University, 1978 (in Russian) (translation: Mathematical Research Center Technical Summary Report 2039, Madison, 1980).

[27]

A. B. Vasilieva, On the development of singular perturbation theory at Moscow State University and elsewhere, SIAM Review, 36 (1994), 440-452. doi: 10.1137/1036100.

[28]

F. Verhulst, "Methods and Applications of Singular Perturbations," Springer, New York, 2005. doi: 10.1007/0-387-28313-7.

[1]

Weichung Wang, Tsung-Fang Wu, Chien-Hsiang Liu. On the multiple spike solutions for singularly perturbed elliptic systems. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 237-258. doi: 10.3934/dcdsb.2013.18.237

[2]

Bedr'Eddine Ainseba. Age-dependent population dynamics diffusive systems. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1233-1247. doi: 10.3934/dcdsb.2004.4.1233

[3]

Jacek Banasiak, Amartya Goswami. Singularly perturbed population models with reducible migration matrix 1. Sova-Kurtz theorem and the convergence to the aggregated model. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 617-635. doi: 10.3934/dcds.2015.35.617

[4]

Giovanni Russo, Fabian Wirth. Matrix measures, stability and contraction theory for dynamical systems on time scales. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3345-3374. doi: 10.3934/dcdsb.2021188

[5]

Tristan Roget. On the long-time behaviour of age and trait structured population dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2551-2576. doi: 10.3934/dcdsb.2018265

[6]

Flaviano Battelli, Ken Palmer. Heteroclinic connections in singularly perturbed systems. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 431-461. doi: 10.3934/dcdsb.2008.9.431

[7]

Yicang Zhou, Paolo Fergola. Dynamics of a discrete age-structured SIS models. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 841-850. doi: 10.3934/dcdsb.2004.4.841

[8]

Jacek Banasiak, Rodrigue Yves M'pika Massoukou. A singularly perturbed age structured SIRS model with fast recovery. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2383-2399. doi: 10.3934/dcdsb.2014.19.2383

[9]

Lei Liu, Shaoying Lu, Cunwu Han, Chao Li, Zejin Feng. Fault estimation and optimization for uncertain disturbed singularly perturbed systems with time-delay. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 367-379. doi: 10.3934/naco.2020008

[10]

Valentin Butuzov, Nikolay Nefedov, Oleh Omel'chenko, Lutz Recke. Boundary layer solutions to singularly perturbed quasilinear systems. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021226

[11]

Mostafa Fazly, Mahmoud Hesaaraki. Periodic solutions for a semi-ratio-dependent predator-prey dynamical system with a class of functional responses on time scales. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 267-279. doi: 10.3934/dcdsb.2008.9.267

[12]

Yunfei Peng, X. Xiang, W. Wei. Backward problems of nonlinear dynamical equations on time scales. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1553-1564. doi: 10.3934/dcdss.2011.4.1553

[13]

Yueding Yuan, Zhiming Guo, Moxun Tang. A nonlocal diffusion population model with age structure and Dirichlet boundary condition. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2095-2115. doi: 10.3934/cpaa.2015.14.2095

[14]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[15]

Flaviano Battelli, Ken Palmer. Transversal periodic-to-periodic homoclinic orbits in singularly perturbed systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 367-387. doi: 10.3934/dcdsb.2010.14.367

[16]

Farid Bozorgnia, Martin Burger, Morteza Fotouhi. On a class of singularly perturbed elliptic systems with asymptotic phase segregation. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3539-3556. doi: 10.3934/dcds.2022023

[17]

Weigu Li, Kening Lu. Takens theorem for random dynamical systems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3191-3207. doi: 10.3934/dcdsb.2016093

[18]

Massimiliano Berti, Philippe Bolle. Fast Arnold diffusion in systems with three time scales. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 795-811. doi: 10.3934/dcds.2002.8.795

[19]

B. Kaymakcalan, R. Mert, A. Zafer. Asymptotic equivalence of dynamic systems on time scales. Conference Publications, 2007, 2007 (Special) : 558-567. doi: 10.3934/proc.2007.2007.558

[20]

Matthew Foreman, Benjamin Weiss. From odometers to circular systems: A global structure theorem. Journal of Modern Dynamics, 2019, 15: 345-423. doi: 10.3934/jmd.2019024

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (8)

[Back to Top]