2013, 10(3): 579-590. doi: 10.3934/mbe.2013.10.579

Identifying preseizure state in intracranial EEG data using diffusion kernels

1. 

101 AKW, 51 Prospect St. New Haven, CT 06511, United States

2. 

103 AKW, 51 Prospect St. New Haven, CT 06511, United States

3. 

716 LLCI, 15 York St. New Haven, CT 06520, United States

4. 

108A AKW, 51 Prospect St. New Haven, CT 06511, United States

Received  July 2012 Revised  December 2012 Published  April 2013

The goal of this study is to identify preseizure changes in intracranial EEG (icEEG). A novel approach based on the recently developed diffusion map framework, which is considered to be one of the leading manifold learning methods, is proposed. Diffusion mapping provides dimensionality reduction of the data as well as pattern recognition that can be used to distinguish different states of the patient, for example, interictal and preseizure. A new algorithm, which is an extension of diffusion maps, is developed to construct coordinates that generate efficient geometric representations of the complex structures in the icEEG data. In addition, this method is adapted to the icEEG data and enables the extraction of the underlying brain activity.
    The algorithm is tested on icEEG data recorded from several electrode contacts from a patient being evaluated for possible epilepsy surgery at the Yale-New Haven Hospital. Numerical results show that the proposed approach provides a distinction between interictal and preseizure states.
Citation: Dominique Duncan, Ronen Talmon, Hitten P. Zaveri, Ronald R. Coifman. Identifying preseizure state in intracranial EEG data using diffusion kernels. Mathematical Biosciences & Engineering, 2013, 10 (3) : 579-590. doi: 10.3934/mbe.2013.10.579
References:
[1]

R. G. Andrzejak, F. Mormann, R. Kreuz, C. Rieke, A. Kraskov, C. E. Elger and K. Lehnertz, Testing the null hypothesis of the nonexistence of a preseizure state, Phys. Rev. E, 67 (2003), 10901. doi: 10.1103/PhysRevE.67.010901.

[2]

J. Britz, D. Van De Ville and C. M. Michel, BOLD correlates of EEG topography reveal rapid resting-state network dynamics, NeuroImage, 52 (2010), 1162-1170. doi: 10.1016/j.neuroimage.2010.02.052.

[3]

R. R. Coifman and S. Lafon, Diffusion maps, Appl. Comp. Harm. Anal., 21 (2006), 5-30. doi: 10.1016/j.acha.2006.04.006.

[4]

D. Duncan, R. B. Duckrow, R. R. Coifman and H. P. Zaveri, Intracranial EEG Evaluation of a Resting State Network, Challenges of Modern Technology, 1 (2010), 27-29.

[5]

M. G. Frei, H. P. Zaveri, S. Arthurs, G. K. Bergey, C. C. Jouny, K. Lehnertz, J. Gotman, I. Osorio, T. I. Netoff, W. J. Freeman, J. Jefferys, G. Worrell, M. Le Van Quyen, S. J. Schiff and F. Mormann, Controversies in epilepsy: Debates held during the fourth international workshop on seizure prediction, Epilepsy and Behavior, 19 (2010), 4-16. doi: 10.1016/j.yebeh.2010.06.009.

[6]

I. I. Goncharova, H. P. Zaveri, R. B. Duckrow, E. J. Novotny and S. S. Spencer, Spatial distribution of intracranially recorded spikes in medial and lateral temporal epilepsies, Epilepsia, 50 (2009), 2575-85. doi: 10.1111/j.1528-1167.2009.02258.x.

[7]

W. A. Hauser, J. F. Annegers and W. A. Rocca, Descriptive epidemiology of epilepsy: Contributions of population-based studies from Rochester, Minnesota, Mayo. Clin. Proc., 71 (1996), 576-586. doi: 10.4065/71.6.576.

[8]

D. Kushnir, A. Haddad and R. R. Coifman, Anisotropic diffusion on sub-manifolds with application to earth structure classification, Appl. Comp. Harm. Anal., 32 (2012), 280-294. doi: 10.1016/j.acha.2011.06.002.

[9]

P. Kwan and M. J. Brodie, Early identification of refractory epilepsy, N. Engl. J. Med., 342 (2000), 314-319. doi: 10.1056/NEJM200002033420503.

[10]

F. Mormann, R. G. Andrzejak, C. E. Elger and K. Lehnertz, Seizure prediction: the long and winding road, Brain, 130 (2007), 314-333. doi: 10.1093/brain/awl241.

[11]

X. Papademetris, A. P. Jackowski, R. T. Schultz, L. H. Staib and J. S. Duncan, Integrated intensity and point-feature non-rigid registration, in "Medical Image Computing and Computer-Assisted Intervention" (Eds. C. Barillot, D. Haynor and P. Hellier) Saint-Malo: Springer, (2004), 763-770.

[12]

M. R. Portnoff, Time-frequency representation of digital signals and systems based on short-time Fourier analysis, IEEE Trans. Signal Process, ASSP-28, 55-69. doi: 10.1109/TASSP.1980.1163359.

[13]

A. Schulze-Bonhage, H. Feldwisch-Drentrup and M. Ihle, Epilepsy and behavior, Elsevier, 22 (2011), S88-S93. doi: 10.1016/j.yebeh.2003.11.021.

[14]

A. Singer and R. R. Coifman, Non-linear independent component analysis with diffusion maps, Appl. Comp. Harm. Anal., 25 (2008), 226-239. doi: 10.1016/j.acha.2007.11.001.

[15]

E. Susman, Brain stimulation reduces seizures in refractory adult epilepsy, Neurology Today, 9 (2009), 22-23. doi: 10.1097/01.NT.0000345158.91024.42.

[16]

R. Talmon and R. R. Coifman, Differential stochastic sensing: intrinsic modeling of random time series with applications to nonlinear tracking, submitted to PNAS, (2012).

[17]

R. Talmon, D. Kushnir, R. R. Coifman, I. Cohen and S. Gannot, Parametrization of linear systems using diffusion kernels, IEEE Trans. Signal Process, 60 (2012). doi: 10.1109/TSP.2011.2177973.

show all references

References:
[1]

R. G. Andrzejak, F. Mormann, R. Kreuz, C. Rieke, A. Kraskov, C. E. Elger and K. Lehnertz, Testing the null hypothesis of the nonexistence of a preseizure state, Phys. Rev. E, 67 (2003), 10901. doi: 10.1103/PhysRevE.67.010901.

[2]

J. Britz, D. Van De Ville and C. M. Michel, BOLD correlates of EEG topography reveal rapid resting-state network dynamics, NeuroImage, 52 (2010), 1162-1170. doi: 10.1016/j.neuroimage.2010.02.052.

[3]

R. R. Coifman and S. Lafon, Diffusion maps, Appl. Comp. Harm. Anal., 21 (2006), 5-30. doi: 10.1016/j.acha.2006.04.006.

[4]

D. Duncan, R. B. Duckrow, R. R. Coifman and H. P. Zaveri, Intracranial EEG Evaluation of a Resting State Network, Challenges of Modern Technology, 1 (2010), 27-29.

[5]

M. G. Frei, H. P. Zaveri, S. Arthurs, G. K. Bergey, C. C. Jouny, K. Lehnertz, J. Gotman, I. Osorio, T. I. Netoff, W. J. Freeman, J. Jefferys, G. Worrell, M. Le Van Quyen, S. J. Schiff and F. Mormann, Controversies in epilepsy: Debates held during the fourth international workshop on seizure prediction, Epilepsy and Behavior, 19 (2010), 4-16. doi: 10.1016/j.yebeh.2010.06.009.

[6]

I. I. Goncharova, H. P. Zaveri, R. B. Duckrow, E. J. Novotny and S. S. Spencer, Spatial distribution of intracranially recorded spikes in medial and lateral temporal epilepsies, Epilepsia, 50 (2009), 2575-85. doi: 10.1111/j.1528-1167.2009.02258.x.

[7]

W. A. Hauser, J. F. Annegers and W. A. Rocca, Descriptive epidemiology of epilepsy: Contributions of population-based studies from Rochester, Minnesota, Mayo. Clin. Proc., 71 (1996), 576-586. doi: 10.4065/71.6.576.

[8]

D. Kushnir, A. Haddad and R. R. Coifman, Anisotropic diffusion on sub-manifolds with application to earth structure classification, Appl. Comp. Harm. Anal., 32 (2012), 280-294. doi: 10.1016/j.acha.2011.06.002.

[9]

P. Kwan and M. J. Brodie, Early identification of refractory epilepsy, N. Engl. J. Med., 342 (2000), 314-319. doi: 10.1056/NEJM200002033420503.

[10]

F. Mormann, R. G. Andrzejak, C. E. Elger and K. Lehnertz, Seizure prediction: the long and winding road, Brain, 130 (2007), 314-333. doi: 10.1093/brain/awl241.

[11]

X. Papademetris, A. P. Jackowski, R. T. Schultz, L. H. Staib and J. S. Duncan, Integrated intensity and point-feature non-rigid registration, in "Medical Image Computing and Computer-Assisted Intervention" (Eds. C. Barillot, D. Haynor and P. Hellier) Saint-Malo: Springer, (2004), 763-770.

[12]

M. R. Portnoff, Time-frequency representation of digital signals and systems based on short-time Fourier analysis, IEEE Trans. Signal Process, ASSP-28, 55-69. doi: 10.1109/TASSP.1980.1163359.

[13]

A. Schulze-Bonhage, H. Feldwisch-Drentrup and M. Ihle, Epilepsy and behavior, Elsevier, 22 (2011), S88-S93. doi: 10.1016/j.yebeh.2003.11.021.

[14]

A. Singer and R. R. Coifman, Non-linear independent component analysis with diffusion maps, Appl. Comp. Harm. Anal., 25 (2008), 226-239. doi: 10.1016/j.acha.2007.11.001.

[15]

E. Susman, Brain stimulation reduces seizures in refractory adult epilepsy, Neurology Today, 9 (2009), 22-23. doi: 10.1097/01.NT.0000345158.91024.42.

[16]

R. Talmon and R. R. Coifman, Differential stochastic sensing: intrinsic modeling of random time series with applications to nonlinear tracking, submitted to PNAS, (2012).

[17]

R. Talmon, D. Kushnir, R. R. Coifman, I. Cohen and S. Gannot, Parametrization of linear systems using diffusion kernels, IEEE Trans. Signal Process, 60 (2012). doi: 10.1109/TSP.2011.2177973.

[1]

Dominique Duncan, Paul Vespa, Arthur W. Toga. Detecting features of epileptogenesis in EEG after TBI using unsupervised diffusion component analysis. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 161-172. doi: 10.3934/dcdsb.2018010

[2]

Marko Filipović, Ivica Kopriva. A comparison of dictionary based approaches to inpainting and denoising with an emphasis to independent component analysis learned dictionaries. Inverse Problems and Imaging, 2011, 5 (4) : 815-841. doi: 10.3934/ipi.2011.5.815

[3]

Dominique Duncan, Thomas Strohmer. Classification of Alzheimer's disease using unsupervised diffusion component analysis. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1119-1130. doi: 10.3934/mbe.2016033

[4]

Hamed Azizollahi, Marion Darbas, Mohamadou M. Diallo, Abdellatif El Badia, Stephanie Lohrengel. EEG in neonates: Forward modeling and sensitivity analysis with respect to variations of the conductivity. Mathematical Biosciences & Engineering, 2018, 15 (4) : 905-932. doi: 10.3934/mbe.2018041

[5]

Yitong Guo, Bingo Wing-Kuen Ling. Principal component analysis with drop rank covariance matrix. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2345-2366. doi: 10.3934/jimo.2020072

[6]

Tran Bao Ngoc, Nguyen Huy Tuan, R. Sakthivel, Donal O'Regan. Analysis of nonlinear fractional diffusion equations with a Riemann-liouville derivative. Evolution Equations and Control Theory, 2022, 11 (2) : 439-455. doi: 10.3934/eect.2021007

[7]

Amadeu Delshams, Rodrigo G. Schaefer. Arnold diffusion for a complete family of perturbations with two independent harmonics. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6047-6072. doi: 10.3934/dcds.2018261

[8]

Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems and Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067

[9]

Hui Zhang, Jian-Feng Cai, Lizhi Cheng, Jubo Zhu. Strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems and Imaging, 2012, 6 (2) : 357-372. doi: 10.3934/ipi.2012.6.357

[10]

Costică Moroşanu. Stability and errors analysis of two iterative schemes of fractional steps type associated to a nonlinear reaction-diffusion equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1567-1587. doi: 10.3934/dcdss.2020089

[11]

G. A. Braga, Frederico Furtado, Jussara M. Moreira, Leonardo T. Rolla. Renormalization group analysis of nonlinear diffusion equations with time dependent coefficients: Analytical results. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 699-715. doi: 10.3934/dcdsb.2007.7.699

[12]

Costică Moroşanu, Bianca Satco. Qualitative and quantitative analysis for a nonlocal and nonlinear reaction-diffusion problem with in-homogeneous Neumann boundary conditions. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022042

[13]

Silviu Dumitru Pavăl, Alex Vasilică, Alin Adochiei. Qualitative and quantitative analysis of a nonlinear second-order anisotropic reaction-diffusion model of an epidemic infection spread. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022094

[14]

Peter Ashwin, Xin-Chu Fu. Symbolic analysis for some planar piecewise linear maps. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1533-1548. doi: 10.3934/dcds.2003.9.1533

[15]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061

[16]

Bilal Saad, Mazen Saad. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 317-346. doi: 10.3934/dcdss.2014.7.317

[17]

Qingshan You, Qun Wan, Yipeng Liu. A short note on strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems and Imaging, 2013, 7 (1) : 305-306. doi: 10.3934/ipi.2013.7.305

[18]

Shouming Zhou, Shanshan Zheng. Qualitative analysis for a new generalized 2-component Camassa-Holm system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4659-4675. doi: 10.3934/dcdss.2021132

[19]

Mauro Maggioni, James M. Murphy. Learning by active nonlinear diffusion. Foundations of Data Science, 2019, 1 (3) : 271-291. doi: 10.3934/fods.2019012

[20]

Kota Ikeda, Masayasu Mimura. Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion. Communications on Pure and Applied Analysis, 2012, 11 (1) : 275-305. doi: 10.3934/cpaa.2012.11.275

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (14)

[Back to Top]