-
Previous Article
Identifying requirements for the invasion of a tick species and tick-borne pathogen through TICKSIM
- MBE Home
- This Issue
-
Next Article
A partial differential equation model of metastasized prostatic cancer
Can malaria parasite pathogenesis be prevented by treatment with tumor necrosis factor-alpha?
1. | MBI, Ohio State University, Columbus, OH 43210, United States |
2. | Department of Mathematics, University of Botswana, Gaborone |
References:
[1] |
R. M. Anderson, R. M. May and S. Gupta, Non-linear phenomena in host-parasite interactions, Parasitology, 99 (Suppl) (1989), S59-S79.
doi: 10.1017/S0031182000083426. |
[2] |
A. L. Bauer, Ian B. Hogue, Simeone Marino and Denise E. Kirschner, The effects of HIV-1 infection on latent tuberculosis, Math. Model. Nat. Pheno, 3 (2008), 229-266.
doi: 10.1051/mmnp:2008051. |
[3] |
K. Artavanis-Tsakonas and E. M. Riley, Innate immune response to malaria: Rapid induction of INF-$\gamma$ from human NK cells in live Plasmodium falciparum infected erythrocytes, 169 (2002), 2956-2963. |
[4] |
K. Artavanis-Tsakonas, J. E. Tonren and E. M. Riley, The war between the malaria parasite and the immune system: Immunity, immunoregulation and immunopathology, Clinical and Experimental Immunology, 133 (2003), 145-152. |
[5] |
R. V. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4$^+$ T cells, Mathematical Biosciences, 165 (2000), 27-39.
doi: 10.1016/S0025-5564(00)00006-7. |
[6] |
J. Day, A. Friedman and L. Schlesinger, Modeling the immune rheostat of macrophages in the lung in response to infection, PNAS, 106 (2009), 11246-11251. |
[7] |
C. Demangel and W. J. Britton, Interaction of dendritic cells with mycobacteria: Where the action starts, Immunol. Cells Biology, 78 (2000), 318-324.
doi: 10.1046/j.1440-1711.2000.00935.x. |
[8] |
D. Dodoo et al, Absolute levels and ratios of pro-inflammatory and anti-inflammatory cytokine production in vitro predict clinical immunity to P. falciparum malaria, J. Infect. Dis, 185 (2002), 971. |
[9] |
C. R. Engwerda and M. F. Good, Interaction between malaria parasites and the host immune system, Current Opinion in Immunology, 17 (2005), 381-387.
doi: 10.1016/j.coi.2005.05.010. |
[10] |
N. Fevre et al, The course of plasmodium chabaudi infections in interferon-$\gamma$ recepto deficient mice, Parasite Immunol, 19 (1997), 375. |
[11] |
A. Friedman, J. Turner and B. Szamolay, A model on the influence of age on immunity to infection with mycobacterium tuberculosis, Eeperimental Gerontology, 43 (2008), 275-285.
doi: 10.1016/j.exger.2007.12.004. |
[12] |
M. B. Graveno, A. R. McLean and D. Kwiatkowski, The regulation of malaria parasitaemia: Parameter estimates for a population model, Parasitology, 110 (1995), 115-122.
doi: 10.1017/S0031182000063861. |
[13] |
B. M. Hoshem, R. Heinrich, W. D. Stein and H. Ginsburg, Mathematical modelling of the within-host dynamics of plasmodium falciparum, Parasitology, 121 (2000), 227-235.
doi: 10.1017/S0031182099006368. |
[14] |
A. Hoare, D. G. Regan and D. P. Wilson, Sampling and sensitivity analysis tools and SASAT for computational modeling, Journal of Theoretical Biology and Medical Modeling, 5 (2008), 4.
doi: 10.1186/1742-4682-5-4. |
[15] |
C. Hetzel and R. M. Anderson, The within-host cellular dynamics of bloodstage malaria: Theoretical and experimental studies, Parasitology, 113 (1996), 25-38.
doi: 10.1017/S0031182000066245. |
[16] |
P. Jacob et al, Th1-associated increase in tumor necrosis factor $\alpha$ expression in the spleen correlates with resistance to blood-stage malaria in mice, Infect. Immun, 64 (1996), 535. |
[17] |
P. Jacob et al, In vivo regulation of nitric oxide production by tumor necrosis factor $\alpha$ and $\gamma$ interferon, but not by interferon leukin-4, during blood stage malaria in mice, Infect. Immun, 64 (1996), 44. |
[18] |
D. Kirschner, Using mathematics to understand HIV immune dynamics, Notices of the AMS, 43 (1996), 91-202. |
[19] |
P. G McQueen and F. E. McKenzie, Age-structured red blood cell susceptibility and the dynamics of malaria infections, Proc. Natl. Acad. Sci. USA, 101 (2004), 9161-9166.
doi: 10.1073/pnas.0308256101. |
[20] |
V. Mung'Ala-Odera et al, The burden of the neurocognitive impairment associated with Plasmodium falciparum malaria in sub-sahara Africa, Am. J. Trop. Med. Hyg., 71 (2004), 64-70. |
[21] |
N. Mideo, T. Day and A. F. Read, Modelling malaria pathogenesis, Cellular Microbiology, 10 (2008), 1947-1955.
doi: 10.1111/j.1462-5822.2008.01208.x. |
[22] |
T. Marijani, "Interaction Between the Malaria Parasite and the Host Immune System," Ph.D thesis, Stellenbosch University, RSA. 2012. |
[23] |
R. E. L. Paul and V. Robert, The evolutionary ecology of plasmodium, Ecol. Lett., 6 (2003), 866-880.
doi: 10.1046/j.1461-0248.2003.00509.x. |
[24] |
R. E. L. Paul, S. Bonnet, C. Boudin, T. Tchuinkam and V. Robert, Aggregation in malaria parasites places limits on mosquito infection rates, Infect. Genet. Evol., 7 (2007), 577-586.
doi: 10.1016/j.meegid.2007.04.004. |
[25] |
Roll Back Malaria, "Malaria in Africa," WHO. 2008, http://www.rollbackmalaria.org. |
[26] |
K. A. Rockett et al, Killing of Plasmodium falciparum in vitro by nitric oxide derivatives, Infect. Immun., 59 (1991), 3280-3283. |
[27] |
M. M. Stevenson et al, IL-12-induced protection against blood-stage plasmodium chabaudi AS requires IFN-$\gamma$ and TNF-$\alpha$ and occurs via a nitric oxide-dependent mechanism, The Journal of Immunology, 155 (1995), 2545-2556. |
[28] |
H. L. Shear et al, Role of IFN-$\gamma$ in lethal and nonlethal malaria in susceptible and resistant hosts, J. Immunol., 143 (1989), 2038. |
[29] |
J. B. De Souza et al, Early $\gamma$ interferon responses in lethal and nonlethal murine blood stage malaria, Infect. Immun., 65 (1997), 1593. |
[30] |
R. W. Snow et al, Pediatric mortality in Africa: Plasmodium falciparum malaria as a cause or risk?, Am. J. Trop. Med. Hyg., 71 (2004), 16-24. |
[31] |
O. M. Riveo-Lezcano, Cytokine as immunomodulators in tuberclusis therapy, Resent Patents on Anti-infective Drug Discovery, 3 (2008), 168-176. |
[32] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Bioscinces, 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
show all references
References:
[1] |
R. M. Anderson, R. M. May and S. Gupta, Non-linear phenomena in host-parasite interactions, Parasitology, 99 (Suppl) (1989), S59-S79.
doi: 10.1017/S0031182000083426. |
[2] |
A. L. Bauer, Ian B. Hogue, Simeone Marino and Denise E. Kirschner, The effects of HIV-1 infection on latent tuberculosis, Math. Model. Nat. Pheno, 3 (2008), 229-266.
doi: 10.1051/mmnp:2008051. |
[3] |
K. Artavanis-Tsakonas and E. M. Riley, Innate immune response to malaria: Rapid induction of INF-$\gamma$ from human NK cells in live Plasmodium falciparum infected erythrocytes, 169 (2002), 2956-2963. |
[4] |
K. Artavanis-Tsakonas, J. E. Tonren and E. M. Riley, The war between the malaria parasite and the immune system: Immunity, immunoregulation and immunopathology, Clinical and Experimental Immunology, 133 (2003), 145-152. |
[5] |
R. V. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4$^+$ T cells, Mathematical Biosciences, 165 (2000), 27-39.
doi: 10.1016/S0025-5564(00)00006-7. |
[6] |
J. Day, A. Friedman and L. Schlesinger, Modeling the immune rheostat of macrophages in the lung in response to infection, PNAS, 106 (2009), 11246-11251. |
[7] |
C. Demangel and W. J. Britton, Interaction of dendritic cells with mycobacteria: Where the action starts, Immunol. Cells Biology, 78 (2000), 318-324.
doi: 10.1046/j.1440-1711.2000.00935.x. |
[8] |
D. Dodoo et al, Absolute levels and ratios of pro-inflammatory and anti-inflammatory cytokine production in vitro predict clinical immunity to P. falciparum malaria, J. Infect. Dis, 185 (2002), 971. |
[9] |
C. R. Engwerda and M. F. Good, Interaction between malaria parasites and the host immune system, Current Opinion in Immunology, 17 (2005), 381-387.
doi: 10.1016/j.coi.2005.05.010. |
[10] |
N. Fevre et al, The course of plasmodium chabaudi infections in interferon-$\gamma$ recepto deficient mice, Parasite Immunol, 19 (1997), 375. |
[11] |
A. Friedman, J. Turner and B. Szamolay, A model on the influence of age on immunity to infection with mycobacterium tuberculosis, Eeperimental Gerontology, 43 (2008), 275-285.
doi: 10.1016/j.exger.2007.12.004. |
[12] |
M. B. Graveno, A. R. McLean and D. Kwiatkowski, The regulation of malaria parasitaemia: Parameter estimates for a population model, Parasitology, 110 (1995), 115-122.
doi: 10.1017/S0031182000063861. |
[13] |
B. M. Hoshem, R. Heinrich, W. D. Stein and H. Ginsburg, Mathematical modelling of the within-host dynamics of plasmodium falciparum, Parasitology, 121 (2000), 227-235.
doi: 10.1017/S0031182099006368. |
[14] |
A. Hoare, D. G. Regan and D. P. Wilson, Sampling and sensitivity analysis tools and SASAT for computational modeling, Journal of Theoretical Biology and Medical Modeling, 5 (2008), 4.
doi: 10.1186/1742-4682-5-4. |
[15] |
C. Hetzel and R. M. Anderson, The within-host cellular dynamics of bloodstage malaria: Theoretical and experimental studies, Parasitology, 113 (1996), 25-38.
doi: 10.1017/S0031182000066245. |
[16] |
P. Jacob et al, Th1-associated increase in tumor necrosis factor $\alpha$ expression in the spleen correlates with resistance to blood-stage malaria in mice, Infect. Immun, 64 (1996), 535. |
[17] |
P. Jacob et al, In vivo regulation of nitric oxide production by tumor necrosis factor $\alpha$ and $\gamma$ interferon, but not by interferon leukin-4, during blood stage malaria in mice, Infect. Immun, 64 (1996), 44. |
[18] |
D. Kirschner, Using mathematics to understand HIV immune dynamics, Notices of the AMS, 43 (1996), 91-202. |
[19] |
P. G McQueen and F. E. McKenzie, Age-structured red blood cell susceptibility and the dynamics of malaria infections, Proc. Natl. Acad. Sci. USA, 101 (2004), 9161-9166.
doi: 10.1073/pnas.0308256101. |
[20] |
V. Mung'Ala-Odera et al, The burden of the neurocognitive impairment associated with Plasmodium falciparum malaria in sub-sahara Africa, Am. J. Trop. Med. Hyg., 71 (2004), 64-70. |
[21] |
N. Mideo, T. Day and A. F. Read, Modelling malaria pathogenesis, Cellular Microbiology, 10 (2008), 1947-1955.
doi: 10.1111/j.1462-5822.2008.01208.x. |
[22] |
T. Marijani, "Interaction Between the Malaria Parasite and the Host Immune System," Ph.D thesis, Stellenbosch University, RSA. 2012. |
[23] |
R. E. L. Paul and V. Robert, The evolutionary ecology of plasmodium, Ecol. Lett., 6 (2003), 866-880.
doi: 10.1046/j.1461-0248.2003.00509.x. |
[24] |
R. E. L. Paul, S. Bonnet, C. Boudin, T. Tchuinkam and V. Robert, Aggregation in malaria parasites places limits on mosquito infection rates, Infect. Genet. Evol., 7 (2007), 577-586.
doi: 10.1016/j.meegid.2007.04.004. |
[25] |
Roll Back Malaria, "Malaria in Africa," WHO. 2008, http://www.rollbackmalaria.org. |
[26] |
K. A. Rockett et al, Killing of Plasmodium falciparum in vitro by nitric oxide derivatives, Infect. Immun., 59 (1991), 3280-3283. |
[27] |
M. M. Stevenson et al, IL-12-induced protection against blood-stage plasmodium chabaudi AS requires IFN-$\gamma$ and TNF-$\alpha$ and occurs via a nitric oxide-dependent mechanism, The Journal of Immunology, 155 (1995), 2545-2556. |
[28] |
H. L. Shear et al, Role of IFN-$\gamma$ in lethal and nonlethal malaria in susceptible and resistant hosts, J. Immunol., 143 (1989), 2038. |
[29] |
J. B. De Souza et al, Early $\gamma$ interferon responses in lethal and nonlethal murine blood stage malaria, Infect. Immun., 65 (1997), 1593. |
[30] |
R. W. Snow et al, Pediatric mortality in Africa: Plasmodium falciparum malaria as a cause or risk?, Am. J. Trop. Med. Hyg., 71 (2004), 16-24. |
[31] |
O. M. Riveo-Lezcano, Cytokine as immunomodulators in tuberclusis therapy, Resent Patents on Anti-infective Drug Discovery, 3 (2008), 168-176. |
[32] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Bioscinces, 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[1] |
Mudassar Imran, Hal L. Smith. The dynamics of bacterial infection, innate immune response, and antibiotic treatment. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 127-143. doi: 10.3934/dcdsb.2007.8.127 |
[2] |
Haitao Song, Weihua Jiang, Shengqiang Liu. Virus dynamics model with intracellular delays and immune response. Mathematical Biosciences & Engineering, 2015, 12 (1) : 185-208. doi: 10.3934/mbe.2015.12.185 |
[3] |
Mika Yoshida, Kinji Fuchikami, Tatsuya Uezu. Realization of immune response features by dynamical system models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 531-552. doi: 10.3934/mbe.2007.4.531 |
[4] |
Sumei Li, Yicang Zhou. Backward bifurcation of an HTLV-I model with immune response. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 863-881. doi: 10.3934/dcdsb.2016.21.863 |
[5] |
Aiping Wang, Michael Y. Li. Viral dynamics of HIV-1 with CTL immune response. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2257-2272. doi: 10.3934/dcdsb.2020212 |
[6] |
Cameron Browne. Immune response in virus model structured by cell infection-age. Mathematical Biosciences & Engineering, 2016, 13 (5) : 887-909. doi: 10.3934/mbe.2016022 |
[7] |
Marcello Delitala, Tommaso Lorenzi. Recognition and learning in a mathematical model for immune response against cancer. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : 891-914. doi: 10.3934/dcdsb.2013.18.891 |
[8] |
Fabrizio Clarelli, Roberto Natalini. A pressure model of immune response to mycobacterium tuberculosis infection in several space dimensions. Mathematical Biosciences & Engineering, 2010, 7 (2) : 277-300. doi: 10.3934/mbe.2010.7.277 |
[9] |
Gesham Magombedze, Winston Garira, Eddie Mwenje. Modelling the human immune response mechanisms to mycobacterium tuberculosis infection in the lungs. Mathematical Biosciences & Engineering, 2006, 3 (4) : 661-682. doi: 10.3934/mbe.2006.3.661 |
[10] |
Seema Nanda, Lisette dePillis, Ami Radunskaya. B cell chronic lymphocytic leukemia - A model with immune response. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : 1053-1076. doi: 10.3934/dcdsb.2013.18.1053 |
[11] |
Yilong Li, Shigui Ruan, Dongmei Xiao. The Within-Host dynamics of malaria infection with immune response. Mathematical Biosciences & Engineering, 2011, 8 (4) : 999-1018. doi: 10.3934/mbe.2011.8.999 |
[12] |
Loïc Barbarroux, Philippe Michel, Mostafa Adimy, Fabien Crauste. A multiscale model of the CD8 T cell immune response structured by intracellular content. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3969-4002. doi: 10.3934/dcdsb.2018120 |
[13] |
Jinliang Wang, Lijuan Guan. Global stability for a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 297-302. doi: 10.3934/dcdsb.2012.17.297 |
[14] |
Hee-Dae Kwon, Jeehyun Lee, Myoungho Yoon. An age-structured model with immune response of HIV infection: Modeling and optimal control approach. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 153-172. doi: 10.3934/dcdsb.2014.19.153 |
[15] |
Jeng-Huei Chen. An analysis of functional curability on HIV infection models with Michaelis-Menten-type immune response and its generalization. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2089-2120. doi: 10.3934/dcdsb.2017086 |
[16] |
Lianwen Wang, Zhijun Liu, Yong Li, Dashun Xu. Complete dynamical analysis for a nonlinear HTLV-I infection model with distributed delay, CTL response and immune impairment. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 917-933. doi: 10.3934/dcdsb.2019196 |
[17] |
Jinhu Xu, Yicang Zhou. Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences & Engineering, 2016, 13 (2) : 343-367. doi: 10.3934/mbe.2015006 |
[18] |
Yu Ji, Lan Liu. Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 133-149. doi: 10.3934/dcdsb.2016.21.133 |
[19] |
Huiyan Zhu, Xingfu Zou. Dynamics of a HIV-1 Infection model with cell-mediated immune response and intracellular delay. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 511-524. doi: 10.3934/dcdsb.2009.12.511 |
[20] |
Zhijun Liu, Lianwen Wang, Ronghua Tan. Spatiotemporal dynamics for a diffusive HIV-1 infection model with distributed delays and CTL immune response. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2767-2790. doi: 10.3934/dcdsb.2021159 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]