2013, 10(3): 667-690. doi: 10.3934/mbe.2013.10.667

On the sensitivity of feature ranked lists for large-scale biological data

1. 

Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland, Poland

Received  June 2012 Revised  January 2013 Published  April 2013

The problem of feature selection for large-scale genomic data, for example from DNA microarray experiments, is one of the fundamental and well-investigated problems in modern computational biology. From the computational point of view, a selected gene list should be characterized by good predictive power and should be understood and well explained from the biological point of view. Recently, another feature of selected gene lists is increasingly investigated, namely their stability which measures how the content and/or the gene order change when the data are perturbed. In this paper we propose a new approach to analysis of gene list stability, termed the sensitivity index, that does not require any data perturbation and allows the gene list that is most reliable in a biological sense to be chosen.
Citation: Danuta Gaweł, Krzysztof Fujarewicz. On the sensitivity of feature ranked lists for large-scale biological data. Mathematical Biosciences & Engineering, 2013, 10 (3) : 667-690. doi: 10.3934/mbe.2013.10.667
References:
[1]

C. Alvarez-Baron, P. Jonsson, C. Thomas, S. Dryer and C. Williams, The two-pore domain potassium channel KCNK5: Induction by estrogen receptor alpha and role in proliferation of breast cancer cells, Molecular Endocrinology, 25 (2011), 1326-1336.

[2]

N. Ballatori, N. Li, F. Fang, J. Boyer, W. Christian and C. Hammond, OST alpha-OST beta: A key membrane transporter of bile acids and conjugated steroids, Frontiers in Bioscience, 14 (2009), 2829-2844. doi: 10.2741/3416.

[3]

A. Boulesteix and M. Slawski, Stability and aggregation of ranked gene lists, Briefings in Bioinformatics, 10 (2009), 556-568. doi: 10.1093/bib/bbp034.

[4]

R. Buckanovich, D. Sasaroli, A. O'Brien-Jenkins, J. Botbyl, R. Hammond, D. Katsaros, R. Sandaltzopoulos, L. Liotta, P. Gimotty and G. Coukos, Tumor vascular proteins as biomarkers in ovarian cancer, Journal of Clinical Oncology, 25 (2007), 852-861. doi: 10.1200/JCO.2006.08.8583.

[5]

V. Catalán, J. Gómez-Ambrosi, A. Rodríguez, B. Ramírez, F. Rotellar, V. Valentí, C. Silva, M. Gil, J. Salvador and G. Frühbeck, Up-regulation of the novel proinflammatory adipokines lipocalin-2, chitinase-3 like-1 and osteopontin as well as angiogenic-related factors in visceral adipose tissue of patients with colon cancer, The Journal of Nutritional Biochemistry, 22 (2011), 634-641.

[6]

F. Coffman, Chitinase 3-Like-1 (CHI3L1): A putative disease marker at the interface of proteomics and glycomics, Critical Reviews in Clinical Laboratory Sciences, 45 (2008), 531-562. doi: 10.1080/10408360802334743.

[7]

X. Deng, J. Xu, J. Hui and C. Wang, Probability fold change: A robust computational approach for identifying differentially expressed gene lists, Computer Methods and Programs in Biomedicine, 93 (2009), 124-139. doi: 10.1016/j.cmpb.2008.07.013.

[8]

S. Dudoit, J. Fridlyand and T. Speed, Comparison of discrimination methods for the classification of tumors using gene expression data, Journal of the American Statistical Association, 97 (2002), 77-87. doi: 10.1198/016214502753479248.

[9]

S. Dudoit and R. Gentleman, "Bioconductor Short Course," 2003. Available from: http://www.bioconductor.org/help/course-materials/2003/Milan/Lectures/classif.pdf.

[10]

T. J. Farr, S. J. Coddington-Lawson, P. M. Snyder and F. J. McDonald, Human Nedd4 interacts with the human epithelial Na+ channel: WW3 but not WW1 binds to Na+-channel subunits, The Biochemical Journal, 345 (2000), 503-509. doi: 10.1042/0264-6021:3450503.

[11]

K. Fujarewicz, et al, A multigene approach to differentiate papillary thyroid carcinoma from benign lesions: Gene selection using bootstrap-based support vector machines, Endocrine - Related Cancer, 14 (2007), 809-826.

[12]

K. Fujarewicz, M. Kimmel and J. Rzeszowska-Wolny, Improved classification of microarray gene expression data using support vector machines, Journal of Medical Informatics and Technologies, 2 (2001), MI9-MI17.

[13]

K. Fujarewicz and M. Wiench, Selecting differencially expressed genes for colon tumor classification, International Journal of Applied Mathematics and Computer Science, 13 (2003), 327-335.

[14]

J. Harvey, A. Gannon, Z. Li, C. Beard and C. Burgess, Identification of a novel methylation marker, SCNN1B, AACR Meeting Abstracts, (2005), 217-c-218 .

[15]

T. Hastie, R. Tibshirani and J. Friedman, "The Elements of Statistical Learning. Data Mining, Inference, and Prediction," 2nd edition, Springer-Verlag, 2009. doi: 10.1007/978-0-387-84858-7.

[16]

M. Irigoyen, M. Pajares, J. Agorreta, M. Ponz-Sarvisé E. Salvo, M. Lozano, R. Pío, I. Gil-Bazo and A. Rouzaut, TGFBI expression is associated with a better response to chemotherapy in NSCLC, Molecular Cancer, 9 (2010). doi: 10.1186/1476-4598-9-130.

[17]

B. Jarzçab, M. Wiench, K. Fujarewicz, K. Simek, M. Jarzçab, M. Oczko-Wojciechowska, J. Włoch, A. Czarniecki, E. Chmielik, D. Lange, A. Pawlaczek, S. Szpak, E. Gubała and A. Świerniak, Gene expression profile of papillary thyroid Ccncer: sources of variability and diagnostic implications, Cancer Research, 65 (2005), 1587-1597.

[18]

G. Jurman, S. Merler, A. Barla, S. Paoli, A. Galea and C. Furlanello, Algebraic stability indicators for ranked lists in molecular profiling, Bioinformatics, 24 (2008), 258-264. doi: 10.1093/bioinformatics/btm550.

[19]

M. Kawada, H. Seno, K. Kanda, Y. Nakanishi, R. Akitake, H. Komekado, K. Kawada, Y. Sakai, E. Mizoguchi and T. Chiba, Chitinase 3-like 1 promotes macrophage recruitment and angiogenesis in colorectal cancer, Oncogene, 31 (2012), 3111-3123. doi: 10.1038/onc.2011.498.

[20]

C. Lai, M. Reinders, L. Veer and L. Wessels, A comparison of univariate and multivariate gene selection techniques for classification of cancer datasets, BMC Bioinformatics, 7 (2006), 235-244.

[21]

C. Ma, Y. Rong, D. Radiloff, M. Datto, B. Centeno, S. Bao, A. Cheng, F. Lin, S. Jiang, T. Yeatman and X Wang, Extracellular matrix protein betaig-h3/TGFBI promotes metastasis of colon cancer by enhancing cell extravasation, Genes Dev., 22 (2008), 308-321.

[22]

L. Melchor, L. Saucedo-Cuevas, I. Munoz-Repeto, S. Rodrģuez-Pinilla, E. Honrado, A. Campoverde, J. Palacios, K. Nathanson, M. García and J. Benítez, Comprehensive characterization of the DNA amplification at 13q34 in human breast cancer reveals TFDP1 and CUL4A as likely candidate target genes, Breast Cancer Research, 11 (2009). doi: 10.1186/bcr2456.

[23]

C. Palena, D. Polev, K. Tsang, et al., The human T-box mesodermal transcription factor Brachyury is a candidate target for T-cell-mediated cancer immunotherapy, Clin. Cancer Res., 13 (2007), 2471-2478. doi: 10.1158/1078-0432.CCR-06-2353.

[24]

T. Palma, A. Conti, T. Cristofaro, S. Scala, L. Nitsch and M. Zannini, Identification of novel Pax8 targets in FRTL-5 thyroid cells by gene silencing and expression microarray analysis, PLoS ONE, 6 (2011), 1-10.

[25]

M. Palma, L. Lopez, M. García, N. de Roja, T. Ruiz, J. García, E. Rosell, C. Vela, P. Rueda and M. Rodriguez, Detection of collagen triple helix repeat containing-1 and nuclear factor (erythroid-derived 2)-like 3 in colorectal cancer, BMC Clinical Pathology, 12 (2012), 2-14. doi: 10.1186/1472-6890-12-2.

[26]

M. Sabatino, M. Marabese, M. Ganzinelli, E. Caiola, C. Geroni and M. Broggini, Down-regulation of the nucleotide excision repair gene XPG as a new mechanism of drug resistance in human and murine cancer cells, Molecular Cancer, 9 (2010). doi: 10.1186/1476-4598-9-259.

[27]

S. Scholzel, W. Zimmermann, G. Schwarzkopf, F. Grunert, B. Rogaczewski and J. Thompson, Carcinoembryonic antigen family members CEACAM6 and CEACAM7 are differentially expressed in normal tissues and oppositely deregulated in hyperplastic colorectal polyps and early adenomas, Am. J. Pathol., 156 (2000), 595-605. doi: 10.1016/S0002-9440(10)64764-5.

[28]

E. Y. Song, H. G. Lee, Y. II Yeom, N. Y. Ji, J. W. Kim, S. Y. Kim, M. S. Won, K. S. Chung, Y. H. Kim, H. K. Chun and J. H. Kim, Diagnostic kit of colon cancer using colon cancer related marker, and diagnostic method therof, 2010, Patent WO/2010/061996.

[29]

G. Stiglic and P. Kokol, Stability of ranked gene lists in large microarray analysis studies, Journal of Biomedicine and Biotechnology, 2010 (2010), 556-568. doi: 10.1155/2010/616358.

[30]

S. Student and K. Fujarewicz, Stable feature selection and classification algorithms for multiclass microarray data, Biology Direct, 7 (2012). doi: 10.1186/1745-6150-7-33.

[31]

J. Thompson, M. Seitz, E. Chastre, M. Ditter, C. Aldrian, C. Gespach and W. Zimmermann, Down-regulation of carcinoembryonic antigen family member 2 expression is an early event in colorectal tumorigenesis, Cancer Research, 57 (1997), 1776-1784.

[32]

V. G. Tusher, R. Tibshirani and G. Chu, Significance analysis of microarrays applied to the ionizing radiation response, Proceedings of the National Academy of Sciences of the United States of America, 98 (2001), 5116-5121. doi: 10.1073/pnas.091062498.

[33]

A. Wali, P. Morin, C. Hough, F. Lonardo, T. Seya, M. Carbone and H. Pass, Identification of intelectin overexpression in malignant pleural mesothelioma by serial analysis of gene expression (SAGE), Lung Cancer, 48 (2005), 19-29. doi: 10.1016/j.lungcan.2004.10.011.

[34]

C. Walsh, S. Ogawa, H. Karahashi, D. Scoles, J. Pavelka, H. Tran, C. Miller, N. Kawamata, C. Ginther, J. Dering, M. Sanada, Y. Nannya, D. Slamon, P. Koeffler and B. Karlan, ERCC5 is a novel biomarker of ovarian cancer prognosis, Journal of Clinical Oncology, 26 (2008), 2952-2958. doi: 10.1200/JCO.2007.13.5806.

[35]

D. Witten and R. Tibshirani, A comparison of fold-change and the t-statistic for microarray data analysis, Stanford University, (2007), 1-13.

[36]

J. Zhou, L. Zhang, Y. Gu, K. Li, Y. Nie, D. Fan and Y. Feng, Dynamic expression of CEACAM7 in precursor lesions of gastric carcinoma and its prognostic value in combination with CEA, World Journal of Surgical Oncology, 9 (2011). doi: 10.1186/1477-7819-9-172.

[37]

, "GEDI (Genetic Diseases/Gene Discovery)," Available from: http://gedi.ci.uchicago.edu/.

[38]

, "GeneCards (Human Gene Compendium)," Available from: http://www.genecards.org/.

[39]

, "MalaCards," Available from: http://www.malacards.org/.

[40]

, " NCBI (National Center for Biotechnology Information) Gene Database," Available from: http://www.ncbi.nlm.nih.gov/.

[41]

, "OMIM (Online Mendelian Inheritance in Man)," Available from: http://www.ncbi.nlm.nih.gov/omim.

[42]

, "The Clinical Correlation Between Scin, Cdkl1, Cugbp1, Slc16a7 With Colorectal Cancer Liver Metastasis," 2012. Available from: http://www.globethesis.com/?t=2154330335497716 and http://www.res-medical.com/oncology/93581.

[43]

, "USGENE BLAST Search Portal," Available from: https://usgene.sequencebase.com/.

[44]

, "WikiGenes," Available from: http://www.wikigenes.org/.

show all references

References:
[1]

C. Alvarez-Baron, P. Jonsson, C. Thomas, S. Dryer and C. Williams, The two-pore domain potassium channel KCNK5: Induction by estrogen receptor alpha and role in proliferation of breast cancer cells, Molecular Endocrinology, 25 (2011), 1326-1336.

[2]

N. Ballatori, N. Li, F. Fang, J. Boyer, W. Christian and C. Hammond, OST alpha-OST beta: A key membrane transporter of bile acids and conjugated steroids, Frontiers in Bioscience, 14 (2009), 2829-2844. doi: 10.2741/3416.

[3]

A. Boulesteix and M. Slawski, Stability and aggregation of ranked gene lists, Briefings in Bioinformatics, 10 (2009), 556-568. doi: 10.1093/bib/bbp034.

[4]

R. Buckanovich, D. Sasaroli, A. O'Brien-Jenkins, J. Botbyl, R. Hammond, D. Katsaros, R. Sandaltzopoulos, L. Liotta, P. Gimotty and G. Coukos, Tumor vascular proteins as biomarkers in ovarian cancer, Journal of Clinical Oncology, 25 (2007), 852-861. doi: 10.1200/JCO.2006.08.8583.

[5]

V. Catalán, J. Gómez-Ambrosi, A. Rodríguez, B. Ramírez, F. Rotellar, V. Valentí, C. Silva, M. Gil, J. Salvador and G. Frühbeck, Up-regulation of the novel proinflammatory adipokines lipocalin-2, chitinase-3 like-1 and osteopontin as well as angiogenic-related factors in visceral adipose tissue of patients with colon cancer, The Journal of Nutritional Biochemistry, 22 (2011), 634-641.

[6]

F. Coffman, Chitinase 3-Like-1 (CHI3L1): A putative disease marker at the interface of proteomics and glycomics, Critical Reviews in Clinical Laboratory Sciences, 45 (2008), 531-562. doi: 10.1080/10408360802334743.

[7]

X. Deng, J. Xu, J. Hui and C. Wang, Probability fold change: A robust computational approach for identifying differentially expressed gene lists, Computer Methods and Programs in Biomedicine, 93 (2009), 124-139. doi: 10.1016/j.cmpb.2008.07.013.

[8]

S. Dudoit, J. Fridlyand and T. Speed, Comparison of discrimination methods for the classification of tumors using gene expression data, Journal of the American Statistical Association, 97 (2002), 77-87. doi: 10.1198/016214502753479248.

[9]

S. Dudoit and R. Gentleman, "Bioconductor Short Course," 2003. Available from: http://www.bioconductor.org/help/course-materials/2003/Milan/Lectures/classif.pdf.

[10]

T. J. Farr, S. J. Coddington-Lawson, P. M. Snyder and F. J. McDonald, Human Nedd4 interacts with the human epithelial Na+ channel: WW3 but not WW1 binds to Na+-channel subunits, The Biochemical Journal, 345 (2000), 503-509. doi: 10.1042/0264-6021:3450503.

[11]

K. Fujarewicz, et al, A multigene approach to differentiate papillary thyroid carcinoma from benign lesions: Gene selection using bootstrap-based support vector machines, Endocrine - Related Cancer, 14 (2007), 809-826.

[12]

K. Fujarewicz, M. Kimmel and J. Rzeszowska-Wolny, Improved classification of microarray gene expression data using support vector machines, Journal of Medical Informatics and Technologies, 2 (2001), MI9-MI17.

[13]

K. Fujarewicz and M. Wiench, Selecting differencially expressed genes for colon tumor classification, International Journal of Applied Mathematics and Computer Science, 13 (2003), 327-335.

[14]

J. Harvey, A. Gannon, Z. Li, C. Beard and C. Burgess, Identification of a novel methylation marker, SCNN1B, AACR Meeting Abstracts, (2005), 217-c-218 .

[15]

T. Hastie, R. Tibshirani and J. Friedman, "The Elements of Statistical Learning. Data Mining, Inference, and Prediction," 2nd edition, Springer-Verlag, 2009. doi: 10.1007/978-0-387-84858-7.

[16]

M. Irigoyen, M. Pajares, J. Agorreta, M. Ponz-Sarvisé E. Salvo, M. Lozano, R. Pío, I. Gil-Bazo and A. Rouzaut, TGFBI expression is associated with a better response to chemotherapy in NSCLC, Molecular Cancer, 9 (2010). doi: 10.1186/1476-4598-9-130.

[17]

B. Jarzçab, M. Wiench, K. Fujarewicz, K. Simek, M. Jarzçab, M. Oczko-Wojciechowska, J. Włoch, A. Czarniecki, E. Chmielik, D. Lange, A. Pawlaczek, S. Szpak, E. Gubała and A. Świerniak, Gene expression profile of papillary thyroid Ccncer: sources of variability and diagnostic implications, Cancer Research, 65 (2005), 1587-1597.

[18]

G. Jurman, S. Merler, A. Barla, S. Paoli, A. Galea and C. Furlanello, Algebraic stability indicators for ranked lists in molecular profiling, Bioinformatics, 24 (2008), 258-264. doi: 10.1093/bioinformatics/btm550.

[19]

M. Kawada, H. Seno, K. Kanda, Y. Nakanishi, R. Akitake, H. Komekado, K. Kawada, Y. Sakai, E. Mizoguchi and T. Chiba, Chitinase 3-like 1 promotes macrophage recruitment and angiogenesis in colorectal cancer, Oncogene, 31 (2012), 3111-3123. doi: 10.1038/onc.2011.498.

[20]

C. Lai, M. Reinders, L. Veer and L. Wessels, A comparison of univariate and multivariate gene selection techniques for classification of cancer datasets, BMC Bioinformatics, 7 (2006), 235-244.

[21]

C. Ma, Y. Rong, D. Radiloff, M. Datto, B. Centeno, S. Bao, A. Cheng, F. Lin, S. Jiang, T. Yeatman and X Wang, Extracellular matrix protein betaig-h3/TGFBI promotes metastasis of colon cancer by enhancing cell extravasation, Genes Dev., 22 (2008), 308-321.

[22]

L. Melchor, L. Saucedo-Cuevas, I. Munoz-Repeto, S. Rodrģuez-Pinilla, E. Honrado, A. Campoverde, J. Palacios, K. Nathanson, M. García and J. Benítez, Comprehensive characterization of the DNA amplification at 13q34 in human breast cancer reveals TFDP1 and CUL4A as likely candidate target genes, Breast Cancer Research, 11 (2009). doi: 10.1186/bcr2456.

[23]

C. Palena, D. Polev, K. Tsang, et al., The human T-box mesodermal transcription factor Brachyury is a candidate target for T-cell-mediated cancer immunotherapy, Clin. Cancer Res., 13 (2007), 2471-2478. doi: 10.1158/1078-0432.CCR-06-2353.

[24]

T. Palma, A. Conti, T. Cristofaro, S. Scala, L. Nitsch and M. Zannini, Identification of novel Pax8 targets in FRTL-5 thyroid cells by gene silencing and expression microarray analysis, PLoS ONE, 6 (2011), 1-10.

[25]

M. Palma, L. Lopez, M. García, N. de Roja, T. Ruiz, J. García, E. Rosell, C. Vela, P. Rueda and M. Rodriguez, Detection of collagen triple helix repeat containing-1 and nuclear factor (erythroid-derived 2)-like 3 in colorectal cancer, BMC Clinical Pathology, 12 (2012), 2-14. doi: 10.1186/1472-6890-12-2.

[26]

M. Sabatino, M. Marabese, M. Ganzinelli, E. Caiola, C. Geroni and M. Broggini, Down-regulation of the nucleotide excision repair gene XPG as a new mechanism of drug resistance in human and murine cancer cells, Molecular Cancer, 9 (2010). doi: 10.1186/1476-4598-9-259.

[27]

S. Scholzel, W. Zimmermann, G. Schwarzkopf, F. Grunert, B. Rogaczewski and J. Thompson, Carcinoembryonic antigen family members CEACAM6 and CEACAM7 are differentially expressed in normal tissues and oppositely deregulated in hyperplastic colorectal polyps and early adenomas, Am. J. Pathol., 156 (2000), 595-605. doi: 10.1016/S0002-9440(10)64764-5.

[28]

E. Y. Song, H. G. Lee, Y. II Yeom, N. Y. Ji, J. W. Kim, S. Y. Kim, M. S. Won, K. S. Chung, Y. H. Kim, H. K. Chun and J. H. Kim, Diagnostic kit of colon cancer using colon cancer related marker, and diagnostic method therof, 2010, Patent WO/2010/061996.

[29]

G. Stiglic and P. Kokol, Stability of ranked gene lists in large microarray analysis studies, Journal of Biomedicine and Biotechnology, 2010 (2010), 556-568. doi: 10.1155/2010/616358.

[30]

S. Student and K. Fujarewicz, Stable feature selection and classification algorithms for multiclass microarray data, Biology Direct, 7 (2012). doi: 10.1186/1745-6150-7-33.

[31]

J. Thompson, M. Seitz, E. Chastre, M. Ditter, C. Aldrian, C. Gespach and W. Zimmermann, Down-regulation of carcinoembryonic antigen family member 2 expression is an early event in colorectal tumorigenesis, Cancer Research, 57 (1997), 1776-1784.

[32]

V. G. Tusher, R. Tibshirani and G. Chu, Significance analysis of microarrays applied to the ionizing radiation response, Proceedings of the National Academy of Sciences of the United States of America, 98 (2001), 5116-5121. doi: 10.1073/pnas.091062498.

[33]

A. Wali, P. Morin, C. Hough, F. Lonardo, T. Seya, M. Carbone and H. Pass, Identification of intelectin overexpression in malignant pleural mesothelioma by serial analysis of gene expression (SAGE), Lung Cancer, 48 (2005), 19-29. doi: 10.1016/j.lungcan.2004.10.011.

[34]

C. Walsh, S. Ogawa, H. Karahashi, D. Scoles, J. Pavelka, H. Tran, C. Miller, N. Kawamata, C. Ginther, J. Dering, M. Sanada, Y. Nannya, D. Slamon, P. Koeffler and B. Karlan, ERCC5 is a novel biomarker of ovarian cancer prognosis, Journal of Clinical Oncology, 26 (2008), 2952-2958. doi: 10.1200/JCO.2007.13.5806.

[35]

D. Witten and R. Tibshirani, A comparison of fold-change and the t-statistic for microarray data analysis, Stanford University, (2007), 1-13.

[36]

J. Zhou, L. Zhang, Y. Gu, K. Li, Y. Nie, D. Fan and Y. Feng, Dynamic expression of CEACAM7 in precursor lesions of gastric carcinoma and its prognostic value in combination with CEA, World Journal of Surgical Oncology, 9 (2011). doi: 10.1186/1477-7819-9-172.

[37]

, "GEDI (Genetic Diseases/Gene Discovery)," Available from: http://gedi.ci.uchicago.edu/.

[38]

, "GeneCards (Human Gene Compendium)," Available from: http://www.genecards.org/.

[39]

, "MalaCards," Available from: http://www.malacards.org/.

[40]

, " NCBI (National Center for Biotechnology Information) Gene Database," Available from: http://www.ncbi.nlm.nih.gov/.

[41]

, "OMIM (Online Mendelian Inheritance in Man)," Available from: http://www.ncbi.nlm.nih.gov/omim.

[42]

, "The Clinical Correlation Between Scin, Cdkl1, Cugbp1, Slc16a7 With Colorectal Cancer Liver Metastasis," 2012. Available from: http://www.globethesis.com/?t=2154330335497716 and http://www.res-medical.com/oncology/93581.

[43]

, "USGENE BLAST Search Portal," Available from: https://usgene.sequencebase.com/.

[44]

, "WikiGenes," Available from: http://www.wikigenes.org/.

[1]

Yunmei Lu, Mingyuan Yan, Meng Han, Qingliang Yang, Yanqing Zhang. Privacy preserving feature selection and Multiclass Classification for horizontally distributed data. Mathematical Foundations of Computing, 2018, 1 (4) : 331-348. doi: 10.3934/mfc.2018016

[2]

Junying Hu, Xiaofei Qian, Jun Pei, Changchun Tan, Panos M. Pardalos, Xinbao Liu. A novel quality prediction method based on feature selection considering high dimensional product quality data. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2977-3000. doi: 10.3934/jimo.2021099

[3]

Jianguo Dai, Wenxue Huang, Yuanyi Pan. A category-based probabilistic approach to feature selection. Big Data & Information Analytics, 2018  doi: 10.3934/bdia.2017020

[4]

Masataka Kato, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Effect of energy-saving server scheduling on power consumption for large-scale data centers. Journal of Industrial and Management Optimization, 2016, 12 (2) : 667-685. doi: 10.3934/jimo.2016.12.667

[5]

Austin Lawson, Tyler Hoffman, Yu-Min Chung, Kaitlin Keegan, Sarah Day. A density-based approach to feature detection in persistence diagrams for firn data. Foundations of Data Science, 2021  doi: 10.3934/fods.2021012

[6]

Mohamed A. Tawhid, Kevin B. Dsouza. Hybrid binary dragonfly enhanced particle swarm optimization algorithm for solving feature selection problems. Mathematical Foundations of Computing, 2018, 1 (2) : 181-200. doi: 10.3934/mfc.2018009

[7]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[8]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control and Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[9]

Mahmut Çalik, Marcel Oliver. Weak solutions for generalized large-scale semigeostrophic equations. Communications on Pure and Applied Analysis, 2013, 12 (2) : 939-955. doi: 10.3934/cpaa.2013.12.939

[10]

Philippe Bonneton, Nicolas Bruneau, Bruno Castelle, Fabien Marche. Large-scale vorticity generation due to dissipating waves in the surf zone. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 729-738. doi: 10.3934/dcdsb.2010.13.729

[11]

Tsuguhito Hirai, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Performance analysis of large-scale parallel-distributed processing with backup tasks for cloud computing. Journal of Industrial and Management Optimization, 2014, 10 (1) : 113-129. doi: 10.3934/jimo.2014.10.113

[12]

Suli Zou, Zhongjing Ma, Xiangdong Liu. Auction games for coordination of large-scale elastic loads in deregulated electricity markets. Journal of Industrial and Management Optimization, 2016, 12 (3) : 833-850. doi: 10.3934/jimo.2016.12.833

[13]

Bo You, Chengkui Zhong, Fang Li. Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1213-1226. doi: 10.3934/dcdsb.2014.19.1213

[14]

Boling Guo, Guoli Zhou. Finite dimensionality of global attractor for the solutions to 3D viscous primitive equations of large-scale moist atmosphere. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4305-4327. doi: 10.3934/dcdsb.2018160

[15]

Bo You, Chunxiang Zhao. Approximation of stationary statistical properties of the three dimensional autonomous planetary geostrophic equations of large-scale ocean circulation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3183-3198. doi: 10.3934/dcdsb.2020057

[16]

Rouhollah Tavakoli, Hongchao Zhang. A nonmonotone spectral projected gradient method for large-scale topology optimization problems. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 395-412. doi: 10.3934/naco.2012.2.395

[17]

Gaohang Yu. A derivative-free method for solving large-scale nonlinear systems of equations. Journal of Industrial and Management Optimization, 2010, 6 (1) : 149-160. doi: 10.3934/jimo.2010.6.149

[18]

Linfei Wang, Dapeng Tao, Ruonan Wang, Ruxin Wang, Hao Li. Big Map R-CNN for object detection in large-scale remote sensing images. Mathematical Foundations of Computing, 2019, 2 (4) : 299-314. doi: 10.3934/mfc.2019019

[19]

Bo You. Well-posedness for the three dimensional stochastic planetary geostrophic equations of large-scale ocean circulation. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1579-1604. doi: 10.3934/dcds.2020332

[20]

Yigui Ou, Wenjie Xu. A unified derivative-free projection method model for large-scale nonlinear equations with convex constraints. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021125

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]