-
Previous Article
Calcium waves with mechano-chemical couplings
- MBE Home
- This Issue
-
Next Article
Mathematical modeling of citrus groves infected by huanglongbing
Hybrid discrete-continuous model of invasive bladder cancer
1. | School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Ramat Aviv, 69978, Israel |
2. | Department of Computer Science and Mathematics, Ariel University Center of Samaria, Ariel, 40700, Israel |
References:
[1] |
A. E. Anderson, A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion, Mathematical Medicine and Biology, 22 (2005), 163-186.
doi: 10.1093/imammb/dqi005. |
[2] |
F. Andreu, V. Caselles and J. Mazan, Diffusion equations with finite speed of propagation, in "Functional Analysis and Evolution Equations" (eds. H. Amann et al), Birkhauser Basel, (2008), 17-34.
doi: 10.1007/978-3-7643-7794-6_2. |
[3] |
Atlas of Genetics and Cytogenetics in Oncology and Haematology, http://AtlasGeneticsOncology.org. Image available for use under CCA license. |
[4] |
A. H. Baker, D. R. Edwards and G. Murphy, Metalloproteinase inhibitors: Biological actions and therapeutic opportunities, J. of Cell Science, 115 (2002), 3719-3727.
doi: 10.1242/jcs.00063. |
[5] |
C. E. Brinckerhoff and L. M.Matrisian, Matrix metalloproteinases: A tail of frog that became a prince, Nature Reviews, Molecular Cell Biology, 3 (2002) 207-214. |
[6] |
H. M Byrne, M. A. J. Chaplain, G. J. Pettet and D. L. S. McElwain, A mathematical model of trophoblast invasion, J. of Theor. Medicine, 1 (1999), 275-286.
doi: 10.1080/10273669908833026. |
[7] |
C. Chang and Z. Werb, The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis, Trends in Cell Biology, 11 (2001), 37-43. |
[8] |
M. A. J. Chaplain and G. Lolas, Mathematical modeling of cancer invasion of tissue: Dynamic heterogeneity, Networks and Heterogeneous Media, 1 (2006), 399-439
doi: 10.3934/nhm.2006.1.399. |
[9] |
L. M. Coussens, B. Fingleton and L. M. Matrisian, Matrix metalloproteinase inhibitors and cancer: Trials and tribulations, Science, 295 (2002), 2387-2392.
doi: 10.1126/science.1067100. |
[10] |
G. B. Ermentrout and L. Edelstein-Keshet, Cellular automata approaches to biological modelling, J. Theor. Biol., 160 (1993), 97-133.
doi: 10.1006/jtbi.1993.1007. |
[11] |
R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Research, 56 (1996), 5745-5753. |
[12] |
B. George, R. H. Datar and R. J. Cote, Molecular biology of bladder cancer: cell cycle alterations, in "Textbook of Bladder Cancer" (eds. S. P. Lerner, et al), Taylor & Francis, (2006), 107-122. |
[13] |
G. Giannelli, J. Falk-Marzillier, O. Schiraldi, W. G. Stetler-Stevenson and V. Quaranta, Induction of cell migration by matrix metalloprotease-2 cleavage of lamitiin-5, Science, 277 (1997), 225-228. |
[14] |
F. Graner and J. A. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model, Phys. Rev. Lett., 69 (1992), 2013-2016.
doi: 10.1103/PhysRevLett.69.2013. |
[15] |
G. P. Hemstreet III and E. M, Messing, Early detection for bladder cancer, in "Textbook of Bladder Cancer" (eds. S. P. Lerner, et al), Taylor & Francis, (2006), 257-266. |
[16] |
A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward and D. Forman, Global cancer statistics, CA: A Cancer J. for Clinicians, 61 (2011), 69-90.
doi: 10.3322/caac.20107. |
[17] |
T. Kakizoe, Development and progression of urothelial carcinoma, Cancer Science, 97 (1982), 821-828.
doi: 10.1111/j.1349-7006.2006.00264.x. |
[18] |
E. Kashdan and S. Bunimovich-Mendrazitsky, "Multi-Scale Model of Bladder Cancer Development," Discrete and Continuous Dynamical Systems, 2011, 803-812. |
[19] |
M. Kirsch-Voldersa, M. Aardemab and A. Elhajoujic, Concepts of threshold in mutagenesis and carcinogenesis, Mutation Res., 464 (2000), 3-11.
doi: 10.1016/S1383-5718(99)00161-8. |
[20] |
C. J. Malemud, Matrix metalloproteinases (MMPs) in health and disease: an overview, Frontiers in Bioscience, 11 (2006), 1696-1701.
doi: 10.2741/1915. |
[21] |
B. P. Marchant, J. Norbury and J. A. Sherratt, Travelling wave solutions to a haptotaxis-dominated model of malignant invasion, Nonlinearity, 14 (2001), 1653-1671.
doi: 10.1088/0951-7715/14/6/313. |
[22] |
C. J. Marshall, L. M. Franks and A. W. Carbonell, Markers of neoplastic transformation in epithelial cell lines derived from human carcinomas, J. Natl. Cancer Inst., 58 (1977), 1743-1751. |
[23] |
L. L. Munn, C. Kunert and J. A. Tyrrell, Modeling tumor blood vessel dynamics, in "Mathematical Methods and Models in Biomedicine" (eds. U. Ledzewicz, et al), Springer, (2012), 113-142.
doi: 10.1007/978-1-4614-4178-6_5. |
[24] |
G. Murphy and J. Gavrilovic, The mathematical modelling of Proteolysis and cell migration: Creating a path?, Curr. Opin. Cell Biol., 11 (1999), 614-621. |
[25] |
K. Nabeshima, W. S. Lane and C. Biswas, Partial sequencing and characterisation of the tumour cell- derived collagenase stimulatory factor, Arch. Biochem. Biophys., 285 (1991), 90-96. |
[26] |
U. 0. Nseyo and D. L. Lamm, Immunotherapy of bladder cancer, Seminars in Surgical Oncology, 13 (1997), 342-349. |
[27] |
J. E. Nutt, G. C. Durkan, J. vK. Mellon and J. Lunce, Matrix metalloproteinases (MMPs) in bladder cancer: The induction of MMP9 by epidermal growth factor and its detection in urine, BJU International, 91 (2003), 99-104.
doi: 10.1046/j.1464-410X.2003.04020.x. |
[28] |
A. J. Perumpanani, J. A. Sherratt, J. Norbury and H. M. Byrne, A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion, Physica D, 126 (1999), 145-159.
doi: 10.1016/S0167-2789(98)00272-3. |
[29] |
V. Quaranta, K. A. Rejniak, P. Gerlee and A. R. A. Anderson, Invasion emerges from cancer cell adaptation to competitive microenvironments: Quantitative predictions from multiscale mathematical models, Seminars in Cancer Biology, 18 (2008), 338-348.
doi: 10.1016/j.semcancer.2008.03.018. |
[30] |
I. Ramis-Conde, M. A. J. Chaplain and A. R. A. Anderson, Mathematical modelling of cancer cell invasion of tissue, Mathematical and Computer Modelling, 47 (2008), 533-545.
doi: 10.1016/j.mcm.2007.02.034. |
[31] |
C. J. Sherr, Cancer cell cycles, Science, 274 (1996), 1672-1677.
doi: 10.1126/science.274.5293.1672. |
[32] |
W. G. Stetler- Stevenson, S. Aznavoorian and L. A. Liotta, Tumor cell interactions with the extracellular matrix during invasion and metastasis, Ann. Rev. Cell Biol., 9 (1993), 541-573. |
[33] |
J. Testa, Loss of metastatic phenotype by a human epidermoid carcinoma cell line hep-3 is accompanied by increased expression of tissue inhibitor of matrix metalloproteinase-2, Cancer Res., 52 (1992), 5597-5603. |
[34] |
Transitional epithelium of the urinary bladder, http://en.wikipedia.org/wiki/Urothelium. Image available for use under CCA license. |
[35] |
S. Turner and J. A. Sheratt, Intercellular adhesion and cancer invasion: A discrete simulation using the extended potts model, J. Theor. Biol., 216 (2002), 85-100.
doi: 10.1006/jtbi.2001.2522. |
[36] |
K. Vasala, P. Paakko and T. Turpeenniemi-Hujanen, Matrix metalloproteinase-9 ( MMP-9) immunoreactive protein in urinary bladder cancer: A marker of favorable prognosis, Anticancer Research, 28 (2008), 1757-1762. |
[37] |
J. L. Vasquez, "Porous Medium Equation. Mathematical Theory," Oxford University Press, Oxford, 2007. |
[38] |
S. M. Wnek, M. K. Medeirosa, K. E. Eblinb and A. J. Gandolfi, Persistence of DNA damage following exposure of human bladder cells to chronic monomethylarsonous acid, Tox. and Appl. Pharm., 241 (2009), 202-209.
doi: 10.1016/j.taap.2009.08.016. |
show all references
References:
[1] |
A. E. Anderson, A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion, Mathematical Medicine and Biology, 22 (2005), 163-186.
doi: 10.1093/imammb/dqi005. |
[2] |
F. Andreu, V. Caselles and J. Mazan, Diffusion equations with finite speed of propagation, in "Functional Analysis and Evolution Equations" (eds. H. Amann et al), Birkhauser Basel, (2008), 17-34.
doi: 10.1007/978-3-7643-7794-6_2. |
[3] |
Atlas of Genetics and Cytogenetics in Oncology and Haematology, http://AtlasGeneticsOncology.org. Image available for use under CCA license. |
[4] |
A. H. Baker, D. R. Edwards and G. Murphy, Metalloproteinase inhibitors: Biological actions and therapeutic opportunities, J. of Cell Science, 115 (2002), 3719-3727.
doi: 10.1242/jcs.00063. |
[5] |
C. E. Brinckerhoff and L. M.Matrisian, Matrix metalloproteinases: A tail of frog that became a prince, Nature Reviews, Molecular Cell Biology, 3 (2002) 207-214. |
[6] |
H. M Byrne, M. A. J. Chaplain, G. J. Pettet and D. L. S. McElwain, A mathematical model of trophoblast invasion, J. of Theor. Medicine, 1 (1999), 275-286.
doi: 10.1080/10273669908833026. |
[7] |
C. Chang and Z. Werb, The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis, Trends in Cell Biology, 11 (2001), 37-43. |
[8] |
M. A. J. Chaplain and G. Lolas, Mathematical modeling of cancer invasion of tissue: Dynamic heterogeneity, Networks and Heterogeneous Media, 1 (2006), 399-439
doi: 10.3934/nhm.2006.1.399. |
[9] |
L. M. Coussens, B. Fingleton and L. M. Matrisian, Matrix metalloproteinase inhibitors and cancer: Trials and tribulations, Science, 295 (2002), 2387-2392.
doi: 10.1126/science.1067100. |
[10] |
G. B. Ermentrout and L. Edelstein-Keshet, Cellular automata approaches to biological modelling, J. Theor. Biol., 160 (1993), 97-133.
doi: 10.1006/jtbi.1993.1007. |
[11] |
R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Research, 56 (1996), 5745-5753. |
[12] |
B. George, R. H. Datar and R. J. Cote, Molecular biology of bladder cancer: cell cycle alterations, in "Textbook of Bladder Cancer" (eds. S. P. Lerner, et al), Taylor & Francis, (2006), 107-122. |
[13] |
G. Giannelli, J. Falk-Marzillier, O. Schiraldi, W. G. Stetler-Stevenson and V. Quaranta, Induction of cell migration by matrix metalloprotease-2 cleavage of lamitiin-5, Science, 277 (1997), 225-228. |
[14] |
F. Graner and J. A. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model, Phys. Rev. Lett., 69 (1992), 2013-2016.
doi: 10.1103/PhysRevLett.69.2013. |
[15] |
G. P. Hemstreet III and E. M, Messing, Early detection for bladder cancer, in "Textbook of Bladder Cancer" (eds. S. P. Lerner, et al), Taylor & Francis, (2006), 257-266. |
[16] |
A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward and D. Forman, Global cancer statistics, CA: A Cancer J. for Clinicians, 61 (2011), 69-90.
doi: 10.3322/caac.20107. |
[17] |
T. Kakizoe, Development and progression of urothelial carcinoma, Cancer Science, 97 (1982), 821-828.
doi: 10.1111/j.1349-7006.2006.00264.x. |
[18] |
E. Kashdan and S. Bunimovich-Mendrazitsky, "Multi-Scale Model of Bladder Cancer Development," Discrete and Continuous Dynamical Systems, 2011, 803-812. |
[19] |
M. Kirsch-Voldersa, M. Aardemab and A. Elhajoujic, Concepts of threshold in mutagenesis and carcinogenesis, Mutation Res., 464 (2000), 3-11.
doi: 10.1016/S1383-5718(99)00161-8. |
[20] |
C. J. Malemud, Matrix metalloproteinases (MMPs) in health and disease: an overview, Frontiers in Bioscience, 11 (2006), 1696-1701.
doi: 10.2741/1915. |
[21] |
B. P. Marchant, J. Norbury and J. A. Sherratt, Travelling wave solutions to a haptotaxis-dominated model of malignant invasion, Nonlinearity, 14 (2001), 1653-1671.
doi: 10.1088/0951-7715/14/6/313. |
[22] |
C. J. Marshall, L. M. Franks and A. W. Carbonell, Markers of neoplastic transformation in epithelial cell lines derived from human carcinomas, J. Natl. Cancer Inst., 58 (1977), 1743-1751. |
[23] |
L. L. Munn, C. Kunert and J. A. Tyrrell, Modeling tumor blood vessel dynamics, in "Mathematical Methods and Models in Biomedicine" (eds. U. Ledzewicz, et al), Springer, (2012), 113-142.
doi: 10.1007/978-1-4614-4178-6_5. |
[24] |
G. Murphy and J. Gavrilovic, The mathematical modelling of Proteolysis and cell migration: Creating a path?, Curr. Opin. Cell Biol., 11 (1999), 614-621. |
[25] |
K. Nabeshima, W. S. Lane and C. Biswas, Partial sequencing and characterisation of the tumour cell- derived collagenase stimulatory factor, Arch. Biochem. Biophys., 285 (1991), 90-96. |
[26] |
U. 0. Nseyo and D. L. Lamm, Immunotherapy of bladder cancer, Seminars in Surgical Oncology, 13 (1997), 342-349. |
[27] |
J. E. Nutt, G. C. Durkan, J. vK. Mellon and J. Lunce, Matrix metalloproteinases (MMPs) in bladder cancer: The induction of MMP9 by epidermal growth factor and its detection in urine, BJU International, 91 (2003), 99-104.
doi: 10.1046/j.1464-410X.2003.04020.x. |
[28] |
A. J. Perumpanani, J. A. Sherratt, J. Norbury and H. M. Byrne, A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion, Physica D, 126 (1999), 145-159.
doi: 10.1016/S0167-2789(98)00272-3. |
[29] |
V. Quaranta, K. A. Rejniak, P. Gerlee and A. R. A. Anderson, Invasion emerges from cancer cell adaptation to competitive microenvironments: Quantitative predictions from multiscale mathematical models, Seminars in Cancer Biology, 18 (2008), 338-348.
doi: 10.1016/j.semcancer.2008.03.018. |
[30] |
I. Ramis-Conde, M. A. J. Chaplain and A. R. A. Anderson, Mathematical modelling of cancer cell invasion of tissue, Mathematical and Computer Modelling, 47 (2008), 533-545.
doi: 10.1016/j.mcm.2007.02.034. |
[31] |
C. J. Sherr, Cancer cell cycles, Science, 274 (1996), 1672-1677.
doi: 10.1126/science.274.5293.1672. |
[32] |
W. G. Stetler- Stevenson, S. Aznavoorian and L. A. Liotta, Tumor cell interactions with the extracellular matrix during invasion and metastasis, Ann. Rev. Cell Biol., 9 (1993), 541-573. |
[33] |
J. Testa, Loss of metastatic phenotype by a human epidermoid carcinoma cell line hep-3 is accompanied by increased expression of tissue inhibitor of matrix metalloproteinase-2, Cancer Res., 52 (1992), 5597-5603. |
[34] |
Transitional epithelium of the urinary bladder, http://en.wikipedia.org/wiki/Urothelium. Image available for use under CCA license. |
[35] |
S. Turner and J. A. Sheratt, Intercellular adhesion and cancer invasion: A discrete simulation using the extended potts model, J. Theor. Biol., 216 (2002), 85-100.
doi: 10.1006/jtbi.2001.2522. |
[36] |
K. Vasala, P. Paakko and T. Turpeenniemi-Hujanen, Matrix metalloproteinase-9 ( MMP-9) immunoreactive protein in urinary bladder cancer: A marker of favorable prognosis, Anticancer Research, 28 (2008), 1757-1762. |
[37] |
J. L. Vasquez, "Porous Medium Equation. Mathematical Theory," Oxford University Press, Oxford, 2007. |
[38] |
S. M. Wnek, M. K. Medeirosa, K. E. Eblinb and A. J. Gandolfi, Persistence of DNA damage following exposure of human bladder cells to chronic monomethylarsonous acid, Tox. and Appl. Pharm., 241 (2009), 202-209.
doi: 10.1016/j.taap.2009.08.016. |
[1] |
T.K. Subrahmonian Moothathu. Homogeneity of surjective cellular automata. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 195-202. doi: 10.3934/dcds.2005.13.195 |
[2] |
Achilles Beros, Monique Chyba, Oleksandr Markovichenko. Controlled cellular automata. Networks and Heterogeneous Media, 2019, 14 (1) : 1-22. doi: 10.3934/nhm.2019001 |
[3] |
Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations and Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43 |
[4] |
Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281 |
[5] |
Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1473-1493. doi: 10.3934/dcdss.2020083 |
[6] |
Wilhelm Stannat, Lukas Wessels. Deterministic control of stochastic reaction-diffusion equations. Evolution Equations and Control Theory, 2021, 10 (4) : 701-722. doi: 10.3934/eect.2020087 |
[7] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control and Related Fields, 2022, 12 (1) : 147-168. doi: 10.3934/mcrf.2021005 |
[8] |
Christoph Sadée, Eugene Kashdan. A model of thermotherapy treatment for bladder cancer. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1169-1183. doi: 10.3934/mbe.2016037 |
[9] |
Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 723-736. doi: 10.3934/dcds.2005.12.723 |
[10] |
Peter E. Kloeden, Thomas Lorenz, Meihua Yang. Reaction-diffusion equations with a switched--off reaction zone. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1907-1933. doi: 10.3934/cpaa.2014.13.1907 |
[11] |
Jacson Simsen, Mariza Stefanello Simsen, Marcos Roberto Teixeira Primo. Reaction-Diffusion equations with spatially variable exponents and large diffusion. Communications on Pure and Applied Analysis, 2016, 15 (2) : 495-506. doi: 10.3934/cpaa.2016.15.495 |
[12] |
Jong-Shenq Guo, Yoshihisa Morita. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 193-212. doi: 10.3934/dcds.2005.12.193 |
[13] |
Akinori Awazu. Input-dependent wave propagations in asymmetric cellular automata: Possible behaviors of feed-forward loop in biological reaction network. Mathematical Biosciences & Engineering, 2008, 5 (3) : 419-427. doi: 10.3934/mbe.2008.5.419 |
[14] |
Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526 |
[15] |
Antoine Mellet, Jean-Michel Roquejoffre, Yannick Sire. Generalized fronts for one-dimensional reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 303-312. doi: 10.3934/dcds.2010.26.303 |
[16] |
Wei Wang, Anthony Roberts. Macroscopic discrete modelling of stochastic reaction-diffusion equations on a periodic domain. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 253-273. doi: 10.3934/dcds.2011.31.253 |
[17] |
Matthieu Alfaro, Thomas Giletti. Varying the direction of propagation in reaction-diffusion equations in periodic media. Networks and Heterogeneous Media, 2016, 11 (3) : 369-393. doi: 10.3934/nhm.2016001 |
[18] |
Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic and Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427 |
[19] |
Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581 |
[20] |
Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]