Citation: |
[1] |
A. Anderson and M. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bulletin of Mathematical Biology, 60 (1998), 857-899.doi: 10.1006/bulm.1998.0042. |
[2] |
K. Anselme, P. Davidson, A. M. Popa, M. Giazzon, M. Liley and L. Ploux, The interaction of cells and bacteria with surfaces structured at the nanometre scale, Acta Biomaterialia, 6 (2010), 3824-3846.doi: 10.1016/j.actbio.2010.04.001. |
[3] |
P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I. Colloq. Math., 66 (1993), 319-334. |
[4] |
A. Blanchet, J. Dolbeault and B. Perthame, Two dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solution, Electron. J. Differential Equations, 2006, No. 44, 32 pp. (electronic). |
[5] |
P. Carmeliet and M. Tessier-Lavigne, Common mechanisms of nerve and blood vessel wiring, Nature, 436 (2005), 193-200.doi: 10.1038/nature03875. |
[6] |
C. S Chen, M. Mrksich, S. Huang, G. M. Whitesides and D. E. Ingber, Geometric control of cell life and death, Science, 276 (1997), 1425-1428.doi: 10.1126/science.276.5317.1425. |
[7] |
L. E. Dike, C. S. Chen, M. Mrksich, J. Tien, G. M. Whitesides and D. E. Ingber, Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substr'ates, in Vitro Cell. Dev. Biol., 35 (1999), 441-448. |
[8] |
J. Dolbeault and B. Perthame, Optimal critical mass in the two dimensional Keller-Segel model in $\mathbbR^2$, C. R. Math. Acad. Sci. Paris, 339 (2004), 611-616.doi: 10.1016/j.crma.2004.08.011. |
[9] |
R. Eymard, T. Gallouet and R. Herbin, "Finite Volume Methods," Handbook of Numerical Analysis, (eds. P. G Ciarlet and J. L Lions), 2007. |
[10] |
A. Folch and M. Toner, Microengineering of cellular interactions, Annu. Rev. Biomed. Eng., 2 (2000), 227-256. |
[11] |
J. Folkman and C. Haudenschild, Angiogenesis in vitro, Nature, 288 (1980), 551-556. |
[12] |
H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.doi: 10.1002/mana.19981950106. |
[13] |
T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2008), 183-217.doi: 10.1007/s00285-008-0201-3. |
[14] |
D. Horstmann, The nonsymmetric case of the Keller-Segel model in chemotaxis: Some recent results, Nonlinear Differ. Equ. Appl., 8 (2001), 399-423.doi: 10.1007/PL00001455. |
[15] |
W. Hundsdorfer and J. G. Verwer, "Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations," Springer Series in Comput. Math., 33, Springer, 2003. |
[16] |
Y. Ito, Surface micropatterning to regulate cell functions, Biomaterials, 20 (1999), 2333-2342.doi: 10.1016/S0142-9612(99)00162-3. |
[17] |
R. K. Jain, Molecular regulation of vessel maturation, Nat. Med., 9 (2003), 685-593.doi: 10.1038/nm0603-685. |
[18] |
R. K. Jain, P. Au, J. Tam, D. G. Duda and D. Fukumura, Engineering vascularized tissue, Nat Biotechnol, 23 (2005), 821-823.doi: 10.1038/nbt0705-821. |
[19] |
G. S. Jiang and C. W Shu, Efficient implementation of weighted ENO schemes, J. of Computational Physics, 126 (1996), 202-228.doi: 10.1006/jcph.1996.0130. |
[20] |
M. Kamei, W. B. Saunders, K. J. Bayless, L. Dye, G. E. Davis and B. M. Weinstein, Endothelial tubes assemble from intracellular vacuoles, in vivo, Nature, 442 (2006), 453-456.doi: 10.1038/nature04923. |
[21] |
E. F. Keller and L. A. Segel, Traveling band of chemotactic bacteria: A theoretical analysis, Journal of Theo. Biol., 30 (1971), 235-248.doi: 10.1016/0022-5193(71)90051-8. |
[22] |
Y. Lei, O. F. Zouani, M. Rémy, L. Ramy and M. C. Durrieu, Modulation of lumen formation by microgeometrical bioactive cues and migration mode of actin machinery, Small, In Revision. doi: 10.1002/smll.201202410. |
[23] |
Y. Lei, O. F. Zouani, M. Rémy, C. Ayela and M. C. Durrieu, Geometrical microfeature cues for directing tubulogenesis of endothelial cells, PLoS ONE, 7 (2012), e41163.doi: 10.1371/journal.pone.0041163. |
[24] |
X. D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes, Journal of Computational Physics, 115 (1994), 200-212.doi: 10.1006/jcph.1994.1187. |
[25] |
B. Lubarsky and M. A. Krasnow., Tube morphogenesis: Making and shaping biological tubes, Cell, 112 (2003), 19-28. |
[26] |
R. M. Nerem, Tissue engineering: The hope, the hype, and the future, Tissue Eng., 12 (2006), 1143-50. |
[27] |
D. V. Nicolau, T. Taguchi, H. Taniguchi, H. Tanigawa and S. Yoshikawa, Patterning neuronal and glia cells on light-assisted functionalized photoresists, Biosens. Bioelectron, 14 (1999), 317-325. |
[28] |
Z. K. Otrock, R. A. Mahfouz, J. A. Makarem and A. I. Shamseddine, Understanding the biology of angiogenesis: Review of the most important molecular mechanisms, Blood Cells Mol. Dis., 39 (2007), 212-220.doi: 10.1016/j.bcmd.2007.04.001. |
[29] |
E. M Ouhabaz, "Analysis of Heat Equations on Domains," London Math. Soc. Monographs Series, Princeton University Press. 31, 2005. |
[30] |
C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338.doi: 10.1007/BF02476407. |
[31] |
E. A. Phelps and A. J.Garcia, Engineering more than a cell: Vascularization strategies in tissue engineering, Curr. Opin. Biotechnol, 21 (2010), 704-709.doi: 10.1016/j.copbio.2010.06.005. |
[32] |
M. I. Santos and R. L. Reis, Vascularization in bone tissue engineering: Physiology, current strategies, major hurdles and future challenges, Macromol Biosci., 10 (2010), 12-27.doi: 10.1002/mabi.200900107. |
[33] |
T. Senba and T. Suzuki, Chemotactic collapse in a parabolic-elliptic system of mathematical biology, Adv. Differential Equations, 6 (2001), 21-50. |
[34] |
Y. Y. Li and M. S. Vogelius, Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients, Arch. Rational Mech. Anal., 153 (2000), 91-151.doi: 10.1007/s002050000082. |
[35] |
F. Y Wang and L.Yan, Gradient estimate on convex domains and application, To Appear in AMS. Proc., 141 (2013), 1067-1081. (Avalaible on http://arxiv.org/abs/1009.1965v2).doi: 10.1090/S0002-9939-2012-11480-7. |