Citation: |
[1] |
J. Arino, C. S. Bowman and S. M. Moghadas, Antiviral resistance during pandemic influenza: Implications for stockpiling and drug use, BMC Infectious Diseases, 9 (2009).doi: 10.1186/1471-2334-9-8. |
[2] |
J. Arino, F. Brauer, P. van den Driessche, J. Watmough and J. Wu, A model for influenza with vaccination and antiviral treatment, Journal of Theoretical Biology, 253 (2008), 118-130.doi: 10.1016/j.jtbi.2008.02.026. |
[3] |
N. E. Basta, D. L. Chao, M. E. Halloran, L. Matrajt and I. M. Jr. Longini, Strategies for pandemic and seasonal influenza vaccination of schoolchildren in the United State, American Journal of Epidemiology, 170 (2009), 679-686.doi: 10.1093/aje/kwp237. |
[4] |
C. T. Bauch, A. P. Galvani and D. J. Earn, Group interest versus self-interest in smallpox vaccination policy, Proceedings of the National Academy of Sciences of the United States of America, 100 (2003), 10564-10567.doi: 10.1073/pnas.1731324100. |
[5] |
C. S. Bowman, J. Arino and S. M. Moghadas, Evaluation of vaccination strategies during pandemic outbreaks, Mathematical Biosciences and Engineering, 8 (2011), 113-122.doi: 10.3934/mbe.2011.8.113. |
[6] |
R. M. Bush, Influenza evolution, in Encyclopedia of Infectious Diseases: Modern Methodologies (ed. M. Tibayrenc, Chapter 13), John Wiley & Sons, Inc., 2007, 199-214. |
[7] |
M. Baguelin, M. Jit, E. Miller and W. J. Edmunds, Health and economic impact of the seasonal influenza vaccination programme in England, Vaccine, 30 (2012), 3459-3462.doi: 10.1016/j.vaccine.2012.03.019. |
[8] |
A. E. Jr. Bryson and Y. C. Ho, Applied Optimal Control: Optimization, Estimation and Control, Taylor & Francis, 1975. |
[9] |
M. G. Cojocaru, C. T. Bauch and M. D. Johnston, Dynamics of vaccination strategies via projected dynamical systems, Bulletin of Mathematical Biology, 69 (2007), 1453-1476.doi: 10.1007/s11538-006-9173-x. |
[10] |
R. B. Couch, et al., Respiratory viral infections in immunocompetent and immunocompromised persons, The American Journal of Medicine, 102 (1997), 2-9. |
[11] |
N. J. Cox and K. Subbarao, Influenza, Lancet, 354 (1999), 1277-1282. |
[12] |
O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, John Wiley & Sons, 2000. |
[13] |
J. Dushoff, et al., Vaccinating to protect a vulnerable subpopulation, {PLOS Medicine}, 4 (2007), e174.doi: 10.1371/journal.pmed.0040174. |
[14] |
N. M. Ferguson, S. Mallett, H. Jackson, N. Roberts and P. Ward, A population-dynamic model for evaluating the potential spread of drug-resistant influenza virus infections during community-based use of antivirals, Journal of Antimicrobial Chemotherapy, 51 (2003), 977-990.doi: 10.1093/jac/dkg136. |
[15] |
N. M. Ferguson, D. A. T. Cummings, S. Cauchemez, C. Fraser, S. Riley, A. Meeyai, S. Iamsirithaworn and D. S. Burke, Strategies for containing an emerging influenza pandemic in Southeast Asia, Nature, 437 (2005), 209-214.doi: 10.1038/nature04017. |
[16] |
K. R. Fister and J. C. Panetta, Optimal control applied to cell-cycle-specific cancer chemotherapy, SIAM Journal on Applied Mathematics (SIAP), 60 (2000), 1059-1072.doi: 10.1137/S0036139998338509. |
[17] |
W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, New York, 1975. |
[18] |
H. Gaff and E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models, Mathematical Biosciences and Engineering, 6 (2009), 469-492.doi: 10.3934/mbe.2009.6.469. |
[19] |
M. E. Halloran, F. G. Hayden, Y. Yang, I. M. Jr. Longini and A. S. Monto, Antiviral effects on influenza viral transmission and pathogenicity: observations from household-based trials, American Journal of Epidemiology, 165 (2006), 212-221.doi: 10.1093/aje/kwj362. |
[20] |
M. E. Halloran and I. M. Jr. Longini, Community studies for vaccinating schoolchildren against influenza, Science, 311 (2006), 615-616. |
[21] |
E. Hansen, Applications of Optimal Control Theory to Infectious Disease Modeling, Ph.D. Thesis, Queen's University, 2011. |
[22] |
E. Hansen and T. Day, Optimal control of epidemics with limited resources, Journal of Mathematical Biology, 62 (2011), 423-451.doi: 10.1007/s00285-010-0341-0. |
[23] |
E. Hansen and T. Day, Optimal antiviral treatment strategies and the effects of resistance, Proceedings of the Royal Society B, 278 (2011), 1082-1089.doi: 10.1098/rspb.2010.1469. |
[24] |
M. Jaberi-Douraki, J. M. Heffernan, J. Wu and S. M. Moghadas, Optimal treatment profile during an influenza epidemic, Differential Equations and Dynamical Systems, 21 (2013), 237-252.doi: 10.1007/s12591-012-0149-z. |
[25] |
M. Jaberi-Douraki and S. M. Moghadas, Optimality of a time-dependent treatment profile during an epidemic, Journal of Biological Dynamics, 7 (2013), 133-147.doi: 10.1080/17513758.2013.816377. |
[26] |
C. D. Johnson, Singular solutions in problems of optimal control, Automatic Control, IEEE Transactions, 8 (1963), 4-15. |
[27] |
H. R. Joshi, Optimal control of an HIV immunology model, Optimal Control Applications and Methods, 23 (2002), 199-213.doi: 10.1002/oca.710. |
[28] |
H. R. Joshi, S. Lenhart and H. Gaff, Optimal harvesting in an integro-difference population model, Optimal Control Applications and Methods, 27 (2006), 61-75.doi: 10.1002/oca.763. |
[29] |
H. R. Joshi, S. Lenhart, H. Lou and H. Gaff, Harvesting control in an integro-difference population model with concave growth term, Nonlinear Analysis: Hybrid Systems, 1 (2007), 417-429.doi: 10.1016/j.nahs.2006.10.010. |
[30] |
E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model, Discrete and Continuous Dynamical Systems B, 2 (2002), 473-482.doi: 10.3934/dcdsb.2002.2.473. |
[31] |
E. Jung, Y. Takeuchi and T. C. Jo, Optimal control strategy for prevention of avian influenza pandemic, Journal of Theoretical Biology, 260 (2009), 220-229.doi: 10.1016/j.jtbi.2009.05.031. |
[32] |
H. J. Kelley, R. E. Kopp and H. G. Moyer, Singular extremals, in Topics in Optimization (ed. G. Leitmann), Academic Press, New York, 1967, 63-101. |
[33] |
D. E. Kirk, Optimal Control Theory: An Introduction, Dover Publications Inc., Mineola., New York, 2004. |
[34] |
R. E. Kopp and H. G. Moyer, Necessary conditions for singular extremals, American Institute of Aeronautics and Astronautics (AIAA) Journal, 3 (1965), 1439-1444.doi: 10.2514/3.3165. |
[35] |
E. G. Kyriakidis and A. Pavitsos, Optimal intervention policies for a multidimensional simple epidemic process, Mathematical and Computer Modelling, 50 (2009), 1318-1324.doi: 10.1016/j.mcm.2009.06.012. |
[36] |
M. Laskowski, et al., The impact of demographic variables on disease spread: Influenza in remote communities, Scientific Reports: Nature, 1 (2011), 105.doi: 10.1038/srep00105. |
[37] |
S. Lee, M. Golinski and G. Chowell, Modeling optimal age-specific vaccination strategies against pandemic influenza, Bulletin of Mathematical Biology., 74 (2012), 958-980.doi: 10.1007/s11538-011-9704-y. |
[38] |
S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, Chapman & Hall, CRC Press, 2007. |
[39] |
D. L. Lukes, Differential Equations: Classical to Controlled, Mathematics in Science and Engineering, 162, Academic Press, New York, 1982. |
[40] |
L. Matrajt and I. M. Jr. Longini, Optimizing vaccine allocation at different points in time during an epidemic, PLoS ONE, 5 (2010) e13767.doi: 10.1371/journal.pone.0013767. |
[41] |
J. Medlock and A. P. Galvani, Optimizing influenza vaccine distribution, Science, 325 (2009), 1705-1708.doi: 10.1126/science.1175570. |
[42] |
G. N. Mercer, S. I. Barry and H. Kelly, Modelling the effect of seasonal influenza vaccination on the risk of pandemic influenza infection, BMC Public Health, 11 (2011), S11.doi: 10.1186/1471-2458-11-S1-S11. |
[43] |
S. M. Moghadas, Management of drug resistance in the population: Influenza as a case study, Proceedings of the Royal Society B, 275 (2008), 1163-1169.doi: 10.1098/rspb.2008.0016. |
[44] |
S. M. Moghadas, C. S. Bowman, G. Röst and J. Wu, Population-Wide Emergence of Antiviral Resistance during Pandemic Influenza, PLoS ONE, 3 (2008), e1839.doi: 10.1371/journal.pone.0001839. |
[45] |
A. S. Monto, K. Hornbuckle and S. E. Ohmit, Influenza vaccine effectiveness among nursing home residents: A cohort study, American Journal of Epidemiology, 154 (2001), 155-160.doi: 10.1093/aje/154.2.155. |
[46] |
K. L. Nichol, K. Tummers, A. Hoyer-Leitzel, J. Marsh, M. Moynihan and S. McKelvey, Modeling seasonal influenza outbreak in a closed college campus: Impact of pre-season vaccination, in-season vaccination and holidays/breaks, PLoS ONE, 5 (2010), e9548.doi: 10.1371/journal.pone.0009548. |
[47] |
R. Patel, I. M. Jr. Longini and M. E. Halloran, Finding optimal vaccination strategies for pandemic inflenza using genetic algorithms, Journal of Theoretical Biology, 234 (2005), 201-212.doi: 10.1016/j.jtbi.2004.11.032. |
[48] |
R. R. Regoes and S. Bonhoeffer, Emergence of drugresistance influenza virus: Population dynamical considerations, Science, 312 (2006), 389-391.doi: 10.1126/science.1122947. |
[49] |
A. H. Reid, T. A. Janczewski, R. M. Lourens, A. J. Elliot, R. S. Daniels, C. L. Berry, J. S. Oxford and J. K. Taubenberger, 1918 influenza pandemic caused by highly conserved viruses with two receptor-binding variants, Emerging Infectious Diseases, 9 (2003), 1249-1253.doi: 10.3201/eid0910.020789. |
[50] |
L. B. Shaw and I. B. Schwartz, Enhanced vaccine control of epidemics in adaptive networks, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 81 (2010), 046120.doi: 10.1103/PhysRevE.81.046120. |
[51] |
H. J. Sussmann, A bang-bang theorem with bounds on the number of switchings, SIAM Journal on Control and Optimization (SICON), 17 (1979), 629-651.doi: 10.1137/0317045. |
[52] |
R. Ullah, G. Zaman and S. Islam, Prevention of influenza pandemic by multiple control strategies, Journal of Applied Mathematics, (2012), Art. ID 294275, 14 pp. |
[53] |
E. Verriest, F. Delmotte and M. Egerstedt, Control of epidemics by vaccination, Proceedings of the American Control Conference, 2 (2005), 985-990.doi: 10.1109/ACC.2005.1470088. |
[54] |
R. G. Webster, Influenza: An emerging disease, Emerging Infectious Diseases, 4 (1998), 436-441.doi: 10.3201/eid0403.980325. |
[55] |
R. G. Webster, W. J. Bean, O. T. Gorman, T. M. Chambers and Y. Kawaoka, Evolution and ecology of influenza A viruses, Microbiology and Molecular Biology Reviews, 56 (1992), 152-179. |
[56] |
D. Weycker, D. Weycker, J. Edelsberg, M. E. Halloran, I. M. Jr. Longini, A. Nizam, V. Ciuryla and G. Oster, Population-wide benefits of routine vaccination of children against influenza, Vaccine, 23 (2005), 1284-1293.doi: 10.1016/j.vaccine.2004.08.044. |
[57] |
K. Wickwire, Optimal immunization rules for an epidemic with recovery, Journal of Optimization Theory and Applications, 27 (1979), 549-570.doi: 10.1007/BF00933440. |