2014, 11(2): 167-188. doi: 10.3934/mbe.2014.11.167

A non-autonomous stochastic predator-prey model

1. 

Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli Federico II, Via Cintia, 80126 Napoli, Italy, Italy, Italy

2. 

Dipartimento di Studi e Ricerche Aziendali, (Management & Information Technology), Università di Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy

Received  September 2012 Revised  January 2013 Published  October 2013

The aim of this paper is to consider a non-autonomous predator-prey-like system, with a Gompertz growth law for the prey. By introducing random variations in both prey birth and predator death rates, a stochastic model for the predator-prey-like system in a random environment is proposed and investigated. The corresponding Fokker-Planck equation is solved to obtain the joint probability density for the prey and predator populations and the marginal probability densities. The asymptotic behavior of the predator-prey stochastic model is also analyzed.
Citation: Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Amelia G. Nobile. A non-autonomous stochastic predator-prey model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 167-188. doi: 10.3934/mbe.2014.11.167
References:
[1]

G. Q. Cai and Y. K. Lin, Stochastic analysis of the Lotka-Volterra model for ecosystems, Phys Rev. E, 70, 041910 (2004) 1-7. doi: 10.1103/PhysRevE.70.041910.  Google Scholar

[2]

G. Q. Cai and Y. K. Lin, Stochastic analysis of predator-prey type ecosystems, Ecological Complexity, 4 (2007), 242-249. doi: 10.1016/j.ecocom.2007.06.011.  Google Scholar

[3]

R. M. Capocelli and L. M. Ricciardi, A diffusion model for population growth in random environment, Theor. Pop. Biol., 5 (1974), 28-41. doi: 10.1016/0040-5809(74)90050-1.  Google Scholar

[4]

R. M. Capocelli and L. M. Ricciardi, Growth with regulation in random environment, Kybernetik, 15 (1974), 147-157. doi: 10.1007/BF00274586.  Google Scholar

[5]

M. F. Dimentberg, Lotka-Volterra system in a random environment, Phys Rev. E, 65, 036204 (2002), 1-7. doi: 10.1103/PhysRevE.65.036204.  Google Scholar

[6]

M. Fan, Q. Wang and X. Zou, Dynamics of a non-autonomous ratio-dependent predator-prey system, Proceedings of the Royal Society of Edinburgh, 133A (2003), 97-118. doi: 10.1017/S0308210500002304.  Google Scholar

[7]

M. W. Feldman and J. Roughgarden, A population's stationary distribution and chance of extinction in a stochastic environment with remarks on the theory of species packing, Theor. Popul. Biol., 7 (1975), 197-207. doi: 10.1016/0040-5809(75)90014-3.  Google Scholar

[8]

N.S. Goel, S.C. Maitra and E.W. Montroll, On the Volterra and other nonlinear models of interacting populations, Reviews of Modern Physics, 43, Part 1 (1971), 231-276. doi: 10.1103/RevModPhys.43.231.  Google Scholar

[9]

A.J. Lotka, Elements of Mathematical Biology, Dover Publications, Inc., New York, 1958.  Google Scholar

[10]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey systems, J. Math. Biol., 36 (1998), 389-406. doi: 10.1007/s002850050105.  Google Scholar

[11]

R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, 1973. Google Scholar

[12]

R. M. May, Theoretical Ecology, Principles and Applications, Oxford University Press, 1976.  Google Scholar

[13]

E. W. Montroll, Some statistical aspects of the theory of interacting species, in Some Mathematical Questions in Biology. III., Lectures on Mathematics in the Life Sciences, 4, The American Mathematical Society, Providence, Rhode Island, (1972), 101-143. Google Scholar

[14]

A. G. Nobile and L. M. Ricciardi, Growth with regulation in fluctuating environments. I. Alternative logistic-like diffusion models, Biol. Cybern., 49 (1984), 179-188. doi: 10.1007/BF00334464.  Google Scholar

[15]

A. G. Nobile and L. M. Ricciardi, Growth with regulation in fluctuating environments. II. Intrinsic lower bounds to population size, Biol. Cybern., 50 (1984), 285-299. doi: 10.1007/BF00337078.  Google Scholar

[16]

A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, Interdisciplinary Applied Mathematics, 14, Mathematical Biology, Springer, 2001.  Google Scholar

[17]

L. M. Ricciardi, Diffusion processes and related topics in biology, Lecture Notes in Biomathematics, 14, Berlin, Heidelberg, New York, Springer, 1977.  Google Scholar

[18]

L. M. Ricciardi, Stochastic population theory: diffusion processes, in Mathematical Ecology (eds. T. G. Hallam and S. A. Levin), (Miramare Trieste, 1982), Biomathematics, 17, Springer Verlag, Berlin, (1986), 191-238.  Google Scholar

[19]

R. J. Swift, A Stochastic Predator-Prey Model, Irish Math. Soc. Bulletin, 48 (2002), 57-63.  Google Scholar

[20]

V. Volterra, Leçon sur la Théorie Mathématique de la Lutte pour la Vie, Les Grands Classiques Gauthier-Villars, Paris, 1931. Google Scholar

[21]

M.C Wang and G.E. Uhlenbeck, On the theory of the Brownian motion. II, Rev. Modern Phys., 17 (1945), 323-342. doi: 10.1103/RevModPhys.17.323.  Google Scholar

[22]

A. Yagi and T.V. Ton, Dynamic of a stochastic predator-prey population, Applied Mathematics and Computation, 218 (2011), 3100-3109. doi: 10.1016/j.amc.2011.08.037.  Google Scholar

[23]

A. S. Zaghrout and F. Hassan, Non-autonomous predator prey model with application, International Mathematical Forum, 5 (2010), 3309-3322.  Google Scholar

[24]

W. R. Zhong, Y. Z. Shao and Z. H. He, Correlated noises in a prey-predator ecosystem, Chin. Phys. Lett., 23 (2006), 742-745. Google Scholar

show all references

References:
[1]

G. Q. Cai and Y. K. Lin, Stochastic analysis of the Lotka-Volterra model for ecosystems, Phys Rev. E, 70, 041910 (2004) 1-7. doi: 10.1103/PhysRevE.70.041910.  Google Scholar

[2]

G. Q. Cai and Y. K. Lin, Stochastic analysis of predator-prey type ecosystems, Ecological Complexity, 4 (2007), 242-249. doi: 10.1016/j.ecocom.2007.06.011.  Google Scholar

[3]

R. M. Capocelli and L. M. Ricciardi, A diffusion model for population growth in random environment, Theor. Pop. Biol., 5 (1974), 28-41. doi: 10.1016/0040-5809(74)90050-1.  Google Scholar

[4]

R. M. Capocelli and L. M. Ricciardi, Growth with regulation in random environment, Kybernetik, 15 (1974), 147-157. doi: 10.1007/BF00274586.  Google Scholar

[5]

M. F. Dimentberg, Lotka-Volterra system in a random environment, Phys Rev. E, 65, 036204 (2002), 1-7. doi: 10.1103/PhysRevE.65.036204.  Google Scholar

[6]

M. Fan, Q. Wang and X. Zou, Dynamics of a non-autonomous ratio-dependent predator-prey system, Proceedings of the Royal Society of Edinburgh, 133A (2003), 97-118. doi: 10.1017/S0308210500002304.  Google Scholar

[7]

M. W. Feldman and J. Roughgarden, A population's stationary distribution and chance of extinction in a stochastic environment with remarks on the theory of species packing, Theor. Popul. Biol., 7 (1975), 197-207. doi: 10.1016/0040-5809(75)90014-3.  Google Scholar

[8]

N.S. Goel, S.C. Maitra and E.W. Montroll, On the Volterra and other nonlinear models of interacting populations, Reviews of Modern Physics, 43, Part 1 (1971), 231-276. doi: 10.1103/RevModPhys.43.231.  Google Scholar

[9]

A.J. Lotka, Elements of Mathematical Biology, Dover Publications, Inc., New York, 1958.  Google Scholar

[10]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey systems, J. Math. Biol., 36 (1998), 389-406. doi: 10.1007/s002850050105.  Google Scholar

[11]

R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, 1973. Google Scholar

[12]

R. M. May, Theoretical Ecology, Principles and Applications, Oxford University Press, 1976.  Google Scholar

[13]

E. W. Montroll, Some statistical aspects of the theory of interacting species, in Some Mathematical Questions in Biology. III., Lectures on Mathematics in the Life Sciences, 4, The American Mathematical Society, Providence, Rhode Island, (1972), 101-143. Google Scholar

[14]

A. G. Nobile and L. M. Ricciardi, Growth with regulation in fluctuating environments. I. Alternative logistic-like diffusion models, Biol. Cybern., 49 (1984), 179-188. doi: 10.1007/BF00334464.  Google Scholar

[15]

A. G. Nobile and L. M. Ricciardi, Growth with regulation in fluctuating environments. II. Intrinsic lower bounds to population size, Biol. Cybern., 50 (1984), 285-299. doi: 10.1007/BF00337078.  Google Scholar

[16]

A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, Interdisciplinary Applied Mathematics, 14, Mathematical Biology, Springer, 2001.  Google Scholar

[17]

L. M. Ricciardi, Diffusion processes and related topics in biology, Lecture Notes in Biomathematics, 14, Berlin, Heidelberg, New York, Springer, 1977.  Google Scholar

[18]

L. M. Ricciardi, Stochastic population theory: diffusion processes, in Mathematical Ecology (eds. T. G. Hallam and S. A. Levin), (Miramare Trieste, 1982), Biomathematics, 17, Springer Verlag, Berlin, (1986), 191-238.  Google Scholar

[19]

R. J. Swift, A Stochastic Predator-Prey Model, Irish Math. Soc. Bulletin, 48 (2002), 57-63.  Google Scholar

[20]

V. Volterra, Leçon sur la Théorie Mathématique de la Lutte pour la Vie, Les Grands Classiques Gauthier-Villars, Paris, 1931. Google Scholar

[21]

M.C Wang and G.E. Uhlenbeck, On the theory of the Brownian motion. II, Rev. Modern Phys., 17 (1945), 323-342. doi: 10.1103/RevModPhys.17.323.  Google Scholar

[22]

A. Yagi and T.V. Ton, Dynamic of a stochastic predator-prey population, Applied Mathematics and Computation, 218 (2011), 3100-3109. doi: 10.1016/j.amc.2011.08.037.  Google Scholar

[23]

A. S. Zaghrout and F. Hassan, Non-autonomous predator prey model with application, International Mathematical Forum, 5 (2010), 3309-3322.  Google Scholar

[24]

W. R. Zhong, Y. Z. Shao and Z. H. He, Correlated noises in a prey-predator ecosystem, Chin. Phys. Lett., 23 (2006), 742-745. Google Scholar

[1]

Nguyen Huu Du, Nguyen Thanh Dieu, Tran Dinh Tuong. Dynamic behavior of a stochastic predator-prey system under regime switching. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3483-3498. doi: 10.3934/dcdsb.2017176

[2]

Inkyung Ahn, Wonlyul Ko, Kimun Ryu. Asymptotic behavior of a ratio-dependent predator-prey system with disease in the prey. Conference Publications, 2013, 2013 (special) : 11-19. doi: 10.3934/proc.2013.2013.11

[3]

Ovide Arino, Manuel Delgado, Mónica Molina-Becerra. Asymptotic behavior of disease-free equilibriums of an age-structured predator-prey model with disease in the prey. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 501-515. doi: 10.3934/dcdsb.2004.4.501

[4]

E. J. Avila–Vales, T. Montañez–May. Asymptotic behavior in a general diffusive three-species predator-prey model. Communications on Pure & Applied Analysis, 2002, 1 (2) : 253-267. doi: 10.3934/cpaa.2002.1.253

[5]

Chao Liu, Bin Liu. Boundedness and asymptotic behavior in a predator-prey model with indirect pursuit-evasion interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021255

[6]

Xinhong Zhang, Qing Yang. Dynamical behavior of a stochastic predator-prey model with general functional response and nonlinear jump-diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021177

[7]

Nguyen Huu Du, Nguyen Hai Dang. Asymptotic behavior of Kolmogorov systems with predator-prey type in random environment. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2693-2712. doi: 10.3934/cpaa.2014.13.2693

[8]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[9]

Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719

[10]

Xinjian Wang, Guo Lin. Asymptotic spreading for a time-periodic predator-prey system. Communications on Pure & Applied Analysis, 2019, 18 (6) : 2983-2999. doi: 10.3934/cpaa.2019133

[11]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[12]

Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75

[13]

Guanqi Liu, Yuwen Wang. Stochastic spatiotemporal diffusive predator-prey systems. Communications on Pure & Applied Analysis, 2018, 17 (1) : 67-84. doi: 10.3934/cpaa.2018005

[14]

Genglin Li, Youshan Tao, Michael Winkler. Large time behavior in a predator-prey system with indirect pursuit-evasion interaction. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4383-4396. doi: 10.3934/dcdsb.2020102

[15]

S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173

[16]

Dayong Qi, Yuanyuan Ke. Large time behavior in a predator-prey system with pursuit-evasion interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021240

[17]

Jing-An Cui, Xinyu Song. Permanence of predator-prey system with stage structure. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 547-554. doi: 10.3934/dcdsb.2004.4.547

[18]

Dongmei Xiao, Kate Fang Zhang. Multiple bifurcations of a predator-prey system. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 417-433. doi: 10.3934/dcdsb.2007.8.417

[19]

Shuxia Pan. Asymptotic spreading in a delayed dispersal predator-prey system without comparison principle. Electronic Research Archive, 2019, 27: 89-99. doi: 10.3934/era.2019011

[20]

Xiao He, Sining Zheng. Bifurcation analysis and dynamic behavior to a predator-prey model with Beddington-DeAngelis functional response and protection zone. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4641-4657. doi: 10.3934/dcdsb.2020117

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (4)

[Back to Top]