2014, 11(3): 427-448. doi: 10.3934/mbe.2014.11.427

Model validation for a noninvasive arterial stenosis detection problem

1. 

Center for Research in Scientific Computation, Center for Quantitative Sciences in Biomedicine, North Carolina State University, Raleigh, NC 27695-8212

2. 

Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC 27695-8212, United States

3. 

Brunel Institute of Computational Mathematics, Brunel University, Uxbridge, UB8 3PH, United Kingdom, United Kingdom, United Kingdom

4. 

Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, United Kingdom, United Kingdom

5. 

Clinical Physics, Barts Health Trust, United Kingdom

Received  January 2013 Revised  May 2013 Published  January 2014

A current thrust in medical research is the development of a non-invasive method for detection, localization, and characterization of an arterial stenosis (a blockage or partial blockage in an artery). A method has been proposed to detect shear waves in the chest cavity which have been generated by disturbances in the blood flow resulting from a stenosis. In order to develop this methodology further, we use one-dimensional shear wave experimental data from novel acoustic phantoms to validate a corresponding viscoelastic mathematical model. We estimate model parameters which give a good fit (in a sense to be precisely defined) to the experimental data, and use asymptotic error theory to provide confidence intervals for parameter estimates. Finally, since a robust error model is necessary for accurate parameter estimates and confidence analysis, we include a comparison of absolute and relative models for measurement error.
Citation: H. Thomas Banks, Shuhua Hu, Zackary R. Kenz, Carola Kruse, Simon Shaw, John Whiteman, Mark P. Brewin, Stephen E. Greenwald, Malcolm J. Birch. Model validation for a noninvasive arterial stenosis detection problem. Mathematical Biosciences & Engineering, 2014, 11 (3) : 427-448. doi: 10.3934/mbe.2014.11.427
References:
[1]

M. Ainsworth, P. Monk and W. Muniz, Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation, Journal of Scientific Computing, 27 (2006), 5-40. doi: 10.1007/s10915-005-9044-x.

[2]

M. Akay, Noninvasive Detection of Coronary Artery Disease Using Advanced Signal Processing Methods, PhD Dissertation, Rutgers University, Piscataway, NJ, 1990.

[3]

M. Akay, Y. Akay, W. Welkowitz, J. Semmlow and J. Kostis, Application of adaptive filters to noninvasive acoustical detection of coronary occlusions before and after angioplasty, IEEE Trans. on Biomed. Eng., 39 (1992), 176-184. doi: 10.1109/10.121649.

[4]

M. Akay, Y. Akay, W. Welkowitz, J. Semmlow and J. Kostis, Noninvasive detection of coronary artery disease using neural networks, Proc. IEEE Eng. in Med. & Biol. Soc., (1991), 1434-1435. doi: 10.1109/IEMBS.1991.684531.

[5]

M. Akay, M. Bauer, J. Semmlow, W. Welkowitz and J. Kostis, Analysis of diastolic heart sounds before and after angioplasty, Proc. IEEE Eng. in Med. & Biol. Soc., (1988), 257-260. doi: 10.1109/IEMBS.1988.94505.

[6]

M. Akay, W. Welkowitz, J. Semmlow and J. Kostis, Application of the ARMA method to acoustic detection of coronary artery disease, Med. & Biol. Eng. & Comput., 29 (1991), 365-372. doi: 10.1007/BF02441656.

[7]

H. T. Banks, A Functional Analysis Framework for Modeling, Estimation and Control in Science and Engineering, CRC Press, Boca Raton London New York, 2012. doi: 10.1201/b12209.

[8]

H. T. Banks, J. H. Barnes, A. Eberhardt, H. Tran and S. Wynne, Modeling and computation of propagating waves from coronary stenoses, Comp. and Appl. Math., 21 (2002), 767-788.

[9]

H. T. Banks and K. Bihari, Modelling and estimating uncertainty in parameter estimation, Inverse Problems, 17 (2001), 95-111. doi: 10.1088/0266-5611/17/1/308.

[10]

H. T. Banks and B. G. Fitzpatrick, Inverse problems for distributed systems: Statistical tests and ANOVA, Proc. International Symp. on Math. Approaches to Envir. and Ecol. Problems, Springer Lecture Notes in Biomath., LCDS/CCS Rep. 88-16, July, 1988, Brown University; 81 (1989), 262-273. doi: 10.1007/978-3-642-46693-9_18.

[11]

H. T. Banks, K. Holm and D. Robbins, Standard error computations for uncertainty quantification in inverse problems: Asymptotic theory vs. Bootstrapping, Math. and Comp. Modelling, CRSC-TR09-13, N.C. State University, 2009; Revised 2010; 52 (2010), 1610-1625. doi: 10.1016/j.mcm.2010.06.026.

[12]

H. T. Banks, S. Hu and Z. R. Kenz, A brief review of elasticity and viscoelasticity for solids, Adv. in Applied Math. and Mech., 3 (2011), 1-51.

[13]

H. T. Banks, S. Hu, Z. R. Kenz, C. Kruse, S. Shaw, J. R. Whiteman, M. P. Brewin, S. E. Greenwald and M. J. Birch, Material parameter estimation and hypothesis testing on a 1D viscoelastic stenosis model: Methodology, J. Inverse and Ill-Posed Problems, CRSC-TR12-09, N.C. State University, (2012); 21 (2013), 25-57. doi: 10.1515/jip-2012-0081.

[14]

H. T. Banks, S. Hu, Z. R. Kenz, C. Kruse, S. Shaw, J. R. Whiteman, M. P. Brewin, S. E. Greenwald and M. J. Birch, Model validation for a noninvasive arterial stenosis detection problem, CRSC-TR12-22, N.C. State University, (2012).

[15]

H. T. Banks, Z. R. Kenz and W. C. Thompson, A review of selected techniques in inverse problem nonparametric probability distribution estimation, J. of Inverse and Ill-Posed Problems, 20 (2012), 429-460. doi: 10.1515/jip-2012-0037.

[16]

H. T. Banks, Z. R. Kenz and W. C. Thompson, An extension of RSS-based model comparison tests for weighted least squares, CRSC-TR12-18, N. C. State University, Raleigh, NC, August, 2012; Intl. J. Pure and Appl. Math., 79 (2012), 155-183.

[17]

H. T. Banks and N. Luke, Modeling of propagating shear waves in biotissue employing an internal variable approach to dissipation, Communication in Computational Physics, 3 (2008), 603-640.

[18]

H. T. Banks, N. Medhin and G. Pinter, Multiscale considerations in modeling of nonlinear elastomers, Inter. J. for Comp. Methods in Eng. Science and Mechanics, 8 (2007), 53-62. doi: 10.1080/15502280601149346.

[19]

H. T. Banks, N. Medhin and G. Pinter, Nonlinear reptation in molecular based hysteresis models for polymers, Quarterly of Applied Math., 62 (2004), 767-779.

[20]

H. T. Banks and G. A. Pinter, A probabilistic multiscale approach to hysteresis in shear wave propagation in biotissue, Multiscale Modeling and Simulation, 3 (2005), 395-412. doi: 10.1137/040603693.

[21]

H. T. Banks and J. R. Samuels, Jr, Detection of cardiac occlusions using viscoelastic wave propagation, Advances in Appl. Math. and Mech., 1 (2009), 1-28.

[22]

H. T. Banks and H. T. Tran, Mathematical and Experimental Modeling of Physical and Biological Processes, CRC Press, Boca Raton, FL, 2009.

[23]

J. D. De Basabe, M. K. Sen and M. F. Wheeler, The interior penalty discontinuous Galerkin method for elastic wave propagation: grid dispersion, Geophys J. Int., 175 (2008), 83-93.

[24]

A. O. Borisyuk, Noise field in the human chest due to turbulent flow in a larger blood vessel, Flow, Turbulence and Combustion, 61 (1999), 269-284. doi: 10.1016/S0889-9746(03)00056-2.

[25]

A. O. Borisyuk, Experimental study of voise produced by steady flow through a simulated vascular stenosis, J. of Sound and Vibration, 256 (2002), 475-498.

[26]

A. O. Borisyuk, Model study of noise field in the human chest due to turbulent flow in a larger blood vessel, J. of Fluids and Structures, 17 (2003), 1095-1110. doi: 10.1016/S0889-9746(03)00056-2.

[27]

M. P. Brewin, M. J. Birch and S. E. Greenwald, et al., Characterization of the uniaxial elastic properties of an agar-based tissue mimicking material, in preparation.

[28]

S. Catheline, J.-L. Gennisson, G. Delon, M. Fink, R. Sinkus, S. Abouelkaram and J. Culioli, Measurement of viscoelastic properties of homogeneous soft solid using transient elastography: an inverse problem approach, J. Acoust. Soc. Am, 116 (2004), 3734-3741. doi: 10.1121/1.1815075.

[29]

S. Catheline, L. Sandrin, J.-L. Gennisson, M. Tanter and M. Fink, Ultrasound-based noninvasive shear elasticity probe for soft tissues, IEEE Ultrasonics Symposium, 2 (2000), 1799-1801. doi: 10.1109/ULTSYM.2000.921672.

[30]

S. Chen, M. Fatemi and J. Greenleaf, Quantifying elasticity and viscosity from measurement of shear wave speed dispersion, J. Acoust. Soc. Am., 115 (2004), 2781-2785. doi: 10.1121/1.1739480.

[31]

S. Chen, M. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao and J. Greenleaf, Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity, IEEE Trans. on Ultrason., Ferroelectrics, and Freq. Contr., 56 (2009), 55-62.

[32]

T. Cheng, Diastolic murmur caused by coronary artery stenosis, Ann. Int. Med, 72 (1970), 543. doi: 10.7326/0003-4819-72-4-543.

[33]

T. Deffieux, G. Montaldo and M. Tanter, Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity, IEEE Trans. on Medical Imag., 28 (2009), 313-322. doi: 10.1109/TMI.2008.925077.

[34]

B. El-Asir, L. Khadra, A. Al-Abbasi and M. Mohammed, Time-frequency analysis of heart sounds, Proc. IEE TENCON, (1996), 553-558. doi: 10.1109/TENCON.1996.608401.

[35]

Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York, 1993. doi: 10.1115/1.3138285.

[36]

A. Góral-Wójcicka, W. Borgieł, Z. Małota and Z. Nawrat, On the acoustic phenomena produced by turbulence in the flowing blood, Polish J. Med. Phys. & Eng., 8 (2002), 29-35.

[37]

A. Karpiouk, S. Alglyamov, Y. Illinskii, E. Zabolotskaya and S. Emelianov, Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity, IEEE Trans. on Ultrason., Ferroelectrics, and Freq. Contr., 56 (2009), 2380-2387. doi: 10.1109/TUFFC.2009.1326.

[38]

C. Kruse, S. Shaw and J. R. Whiteman, High order space-time finite element schemes for acoustic and viscodynamic wave equations with temporal decoupling, in preparation.

[39]

T. S. Lee, W. Liao and H. T. Low, Numerical simulation of turbulent flow through series stenoses, Inter. J. for Numer. Methods in Fluids, 42 (2003), 717-740. doi: 10.1002/fld.550.

[40]

S. Levinson, M. Shinagawa and T. Sato, Sonoelastic determination of human skeletal muscle elasticity, J. Biomechanics, 28 (1995), 1145-1154. doi: 10.1016/0021-9290(94)00173-2.

[41]

S. Lundin, R. Metcalf and C. Hartley, Effects of severity and eccentricity of carotid stenosis on pulsatile blood flow, Proc. Joint EMBS/BMES, (2003), 1311-1312 doi: 10.1109/IEMBS.2002.1106403.

[42]

N. Luke, Modeling Shear Wave Propagation in Biotissue: An Internal Variable Approach to Dissipation, PhD Dissertation, N.C. State University, Raleigh, 2006.

[43]

S. E. Nissen, Application of intravascular ultrasound to characterize coronary artery disease and assess the progression or regression of atherosclerosis, Am. J. Cardiol., 89 (2002), 24B-31B. doi: 10.1016/S0002-9149(02)02217-8.

[44]

S. E. Nissen and P. Yock, Intravascular ultrasound: Novel pathophysiological insights and current clinical applications, Circulation, 103 (2001), 604-616. doi: 10.1161/01.CIR.103.4.604.

[45]

N. Owsley and A. Hull, Beamformed nearfield imaging of a simulated coronary artery containing a stenosis, IEEE Trans. Med. Imaging, 17 (1998), 900-909. doi: 10.1109/42.746623.

[46]

N. Owsley, A. J. Hull, M. H. Ahmed and J. Kassal, A proof of concept experiment for the detection of occluded coronary arteries using array sensor technology, Engr. in Medicine and Biol. Society, IEEE 17th Annual Conf., 1 (1995), 145-146. doi: 10.1109/IEMBS.1995.575042.

[47]

V. Padmanabhan and J. Semmlow, A dedicated system for acoustic detection of coronary artery disease, Proc. Eng. in Med. & Biol. Soc., (1992), 457-458. doi: 10.1109/IEMBS.1992.595658.

[48]

T. Pedley, Mathematical modelling of arterial fluid dynamics, J. of Eng. Math., 47 (2003), 419-444. doi: 10.1023/B:ENGI.0000007978.33352.59.

[49]

C. Prado, S. Ramos, J. Elias, Jr., and M. Rossi, Turbulent blood flow plays an essential localizing role in the development of atherosclerotic lesions in experimentally induced hypercholesterolaemia in rats, Int. J. Exp. Path., 89 (2008), 72-80. doi: 10.1111/j.1365-2613.2007.00564.x.

[50]

J. R. Samuels, Jr., Inverse Problems and Post Analysis Techniques for a Stenosis-Driven Acoustic Wave Propagation Model, PhD Dissertation, N.C. State University, Raleigh, 2008.

[51]

L. Sandrin, S. Catheline, M. Tanter, X. Hennequin and M. Fink, Time-resolved pulsed elastography with ultrafast ultrasonic imaging, Ultrasonic Imaging, 21 (1999), 259-272.

[52]

J. Sangster and C. Oakley, Diastolic murmur of coronary artery stenosis, Brit. Heart J., 35 (1973), 840. doi: 10.1136/hrt.35.8.840.

[53]

J. Semmlow and K. Rahalkar, Acoustic detection of coronary artery disease, Annu. Rev. Biomed. Eng, 9 (2007), 449-469. doi: 10.1146/annurev.bioeng.9.060906.151840.

[54]

J. Semmlow, W. Welkowitz, J. Kostis and J. Mackenzie, Coronary artery disease-correlates between diastolic auditory characteristics and coronary artery stenoses, IEEE Trans. on Biomed. Eng., 30 (1983), 136-139. doi: 10.1109/TBME.1983.325211.

[55]

C. Taylor, T. Hughes and C. Zarins, Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: Relevance to atherosclerosis, Annals of Biomed. Eng., 26 (1998), 975-987. doi: 10.1114/1.140.

[56]

J. Verburg and E. van Vollenhoven, Phonocardiography: Physical and technical aspects and clinical uses, in Noninvasive Physiological Measurements (ed. P Rolfe), Academic Press, London (1979), 213-259.

[57]

H. Vermarien and E. van Vollenhoven, The recording of heart vibrations: A problem of vibration measurement on soft tissue, Med. & Biol. Eng. & Comput., 22 (1984), 168-178. doi: 10.1007/BF02446821.

[58]

A. Voss, A. Mix and T. Hübner, Diagnosing aortic valve stenosis by parameter extraction of heart sound signals, Annals of Biomed. Eng., 33 (2005), 1167-1174. doi: 10.1007/s10439-005-5347-x.

[59]

J.-Z. Wang, B. Tie, W. Welkowitz, J. Semmlow and J. Kostis, Modeling sound generation in stenosed coronary arteries, IEEE Trans. on Biomed. Eng., 37 (1990), 1087-1094. doi: 10.1109/10.61034.

[60]

J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.

[61]

M. Zia, B. Griffel, V. Fridman, C. Saponieri and J. Semmlow, Noise detection in heart sound recordings, Conf. Proc. IEEE Eng. Med. Biol. Soc., (2011), 5880-5883. doi: 10.1109/IEMBS.2011.6091454.

show all references

References:
[1]

M. Ainsworth, P. Monk and W. Muniz, Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation, Journal of Scientific Computing, 27 (2006), 5-40. doi: 10.1007/s10915-005-9044-x.

[2]

M. Akay, Noninvasive Detection of Coronary Artery Disease Using Advanced Signal Processing Methods, PhD Dissertation, Rutgers University, Piscataway, NJ, 1990.

[3]

M. Akay, Y. Akay, W. Welkowitz, J. Semmlow and J. Kostis, Application of adaptive filters to noninvasive acoustical detection of coronary occlusions before and after angioplasty, IEEE Trans. on Biomed. Eng., 39 (1992), 176-184. doi: 10.1109/10.121649.

[4]

M. Akay, Y. Akay, W. Welkowitz, J. Semmlow and J. Kostis, Noninvasive detection of coronary artery disease using neural networks, Proc. IEEE Eng. in Med. & Biol. Soc., (1991), 1434-1435. doi: 10.1109/IEMBS.1991.684531.

[5]

M. Akay, M. Bauer, J. Semmlow, W. Welkowitz and J. Kostis, Analysis of diastolic heart sounds before and after angioplasty, Proc. IEEE Eng. in Med. & Biol. Soc., (1988), 257-260. doi: 10.1109/IEMBS.1988.94505.

[6]

M. Akay, W. Welkowitz, J. Semmlow and J. Kostis, Application of the ARMA method to acoustic detection of coronary artery disease, Med. & Biol. Eng. & Comput., 29 (1991), 365-372. doi: 10.1007/BF02441656.

[7]

H. T. Banks, A Functional Analysis Framework for Modeling, Estimation and Control in Science and Engineering, CRC Press, Boca Raton London New York, 2012. doi: 10.1201/b12209.

[8]

H. T. Banks, J. H. Barnes, A. Eberhardt, H. Tran and S. Wynne, Modeling and computation of propagating waves from coronary stenoses, Comp. and Appl. Math., 21 (2002), 767-788.

[9]

H. T. Banks and K. Bihari, Modelling and estimating uncertainty in parameter estimation, Inverse Problems, 17 (2001), 95-111. doi: 10.1088/0266-5611/17/1/308.

[10]

H. T. Banks and B. G. Fitzpatrick, Inverse problems for distributed systems: Statistical tests and ANOVA, Proc. International Symp. on Math. Approaches to Envir. and Ecol. Problems, Springer Lecture Notes in Biomath., LCDS/CCS Rep. 88-16, July, 1988, Brown University; 81 (1989), 262-273. doi: 10.1007/978-3-642-46693-9_18.

[11]

H. T. Banks, K. Holm and D. Robbins, Standard error computations for uncertainty quantification in inverse problems: Asymptotic theory vs. Bootstrapping, Math. and Comp. Modelling, CRSC-TR09-13, N.C. State University, 2009; Revised 2010; 52 (2010), 1610-1625. doi: 10.1016/j.mcm.2010.06.026.

[12]

H. T. Banks, S. Hu and Z. R. Kenz, A brief review of elasticity and viscoelasticity for solids, Adv. in Applied Math. and Mech., 3 (2011), 1-51.

[13]

H. T. Banks, S. Hu, Z. R. Kenz, C. Kruse, S. Shaw, J. R. Whiteman, M. P. Brewin, S. E. Greenwald and M. J. Birch, Material parameter estimation and hypothesis testing on a 1D viscoelastic stenosis model: Methodology, J. Inverse and Ill-Posed Problems, CRSC-TR12-09, N.C. State University, (2012); 21 (2013), 25-57. doi: 10.1515/jip-2012-0081.

[14]

H. T. Banks, S. Hu, Z. R. Kenz, C. Kruse, S. Shaw, J. R. Whiteman, M. P. Brewin, S. E. Greenwald and M. J. Birch, Model validation for a noninvasive arterial stenosis detection problem, CRSC-TR12-22, N.C. State University, (2012).

[15]

H. T. Banks, Z. R. Kenz and W. C. Thompson, A review of selected techniques in inverse problem nonparametric probability distribution estimation, J. of Inverse and Ill-Posed Problems, 20 (2012), 429-460. doi: 10.1515/jip-2012-0037.

[16]

H. T. Banks, Z. R. Kenz and W. C. Thompson, An extension of RSS-based model comparison tests for weighted least squares, CRSC-TR12-18, N. C. State University, Raleigh, NC, August, 2012; Intl. J. Pure and Appl. Math., 79 (2012), 155-183.

[17]

H. T. Banks and N. Luke, Modeling of propagating shear waves in biotissue employing an internal variable approach to dissipation, Communication in Computational Physics, 3 (2008), 603-640.

[18]

H. T. Banks, N. Medhin and G. Pinter, Multiscale considerations in modeling of nonlinear elastomers, Inter. J. for Comp. Methods in Eng. Science and Mechanics, 8 (2007), 53-62. doi: 10.1080/15502280601149346.

[19]

H. T. Banks, N. Medhin and G. Pinter, Nonlinear reptation in molecular based hysteresis models for polymers, Quarterly of Applied Math., 62 (2004), 767-779.

[20]

H. T. Banks and G. A. Pinter, A probabilistic multiscale approach to hysteresis in shear wave propagation in biotissue, Multiscale Modeling and Simulation, 3 (2005), 395-412. doi: 10.1137/040603693.

[21]

H. T. Banks and J. R. Samuels, Jr, Detection of cardiac occlusions using viscoelastic wave propagation, Advances in Appl. Math. and Mech., 1 (2009), 1-28.

[22]

H. T. Banks and H. T. Tran, Mathematical and Experimental Modeling of Physical and Biological Processes, CRC Press, Boca Raton, FL, 2009.

[23]

J. D. De Basabe, M. K. Sen and M. F. Wheeler, The interior penalty discontinuous Galerkin method for elastic wave propagation: grid dispersion, Geophys J. Int., 175 (2008), 83-93.

[24]

A. O. Borisyuk, Noise field in the human chest due to turbulent flow in a larger blood vessel, Flow, Turbulence and Combustion, 61 (1999), 269-284. doi: 10.1016/S0889-9746(03)00056-2.

[25]

A. O. Borisyuk, Experimental study of voise produced by steady flow through a simulated vascular stenosis, J. of Sound and Vibration, 256 (2002), 475-498.

[26]

A. O. Borisyuk, Model study of noise field in the human chest due to turbulent flow in a larger blood vessel, J. of Fluids and Structures, 17 (2003), 1095-1110. doi: 10.1016/S0889-9746(03)00056-2.

[27]

M. P. Brewin, M. J. Birch and S. E. Greenwald, et al., Characterization of the uniaxial elastic properties of an agar-based tissue mimicking material, in preparation.

[28]

S. Catheline, J.-L. Gennisson, G. Delon, M. Fink, R. Sinkus, S. Abouelkaram and J. Culioli, Measurement of viscoelastic properties of homogeneous soft solid using transient elastography: an inverse problem approach, J. Acoust. Soc. Am, 116 (2004), 3734-3741. doi: 10.1121/1.1815075.

[29]

S. Catheline, L. Sandrin, J.-L. Gennisson, M. Tanter and M. Fink, Ultrasound-based noninvasive shear elasticity probe for soft tissues, IEEE Ultrasonics Symposium, 2 (2000), 1799-1801. doi: 10.1109/ULTSYM.2000.921672.

[30]

S. Chen, M. Fatemi and J. Greenleaf, Quantifying elasticity and viscosity from measurement of shear wave speed dispersion, J. Acoust. Soc. Am., 115 (2004), 2781-2785. doi: 10.1121/1.1739480.

[31]

S. Chen, M. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao and J. Greenleaf, Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity, IEEE Trans. on Ultrason., Ferroelectrics, and Freq. Contr., 56 (2009), 55-62.

[32]

T. Cheng, Diastolic murmur caused by coronary artery stenosis, Ann. Int. Med, 72 (1970), 543. doi: 10.7326/0003-4819-72-4-543.

[33]

T. Deffieux, G. Montaldo and M. Tanter, Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity, IEEE Trans. on Medical Imag., 28 (2009), 313-322. doi: 10.1109/TMI.2008.925077.

[34]

B. El-Asir, L. Khadra, A. Al-Abbasi and M. Mohammed, Time-frequency analysis of heart sounds, Proc. IEE TENCON, (1996), 553-558. doi: 10.1109/TENCON.1996.608401.

[35]

Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York, 1993. doi: 10.1115/1.3138285.

[36]

A. Góral-Wójcicka, W. Borgieł, Z. Małota and Z. Nawrat, On the acoustic phenomena produced by turbulence in the flowing blood, Polish J. Med. Phys. & Eng., 8 (2002), 29-35.

[37]

A. Karpiouk, S. Alglyamov, Y. Illinskii, E. Zabolotskaya and S. Emelianov, Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity, IEEE Trans. on Ultrason., Ferroelectrics, and Freq. Contr., 56 (2009), 2380-2387. doi: 10.1109/TUFFC.2009.1326.

[38]

C. Kruse, S. Shaw and J. R. Whiteman, High order space-time finite element schemes for acoustic and viscodynamic wave equations with temporal decoupling, in preparation.

[39]

T. S. Lee, W. Liao and H. T. Low, Numerical simulation of turbulent flow through series stenoses, Inter. J. for Numer. Methods in Fluids, 42 (2003), 717-740. doi: 10.1002/fld.550.

[40]

S. Levinson, M. Shinagawa and T. Sato, Sonoelastic determination of human skeletal muscle elasticity, J. Biomechanics, 28 (1995), 1145-1154. doi: 10.1016/0021-9290(94)00173-2.

[41]

S. Lundin, R. Metcalf and C. Hartley, Effects of severity and eccentricity of carotid stenosis on pulsatile blood flow, Proc. Joint EMBS/BMES, (2003), 1311-1312 doi: 10.1109/IEMBS.2002.1106403.

[42]

N. Luke, Modeling Shear Wave Propagation in Biotissue: An Internal Variable Approach to Dissipation, PhD Dissertation, N.C. State University, Raleigh, 2006.

[43]

S. E. Nissen, Application of intravascular ultrasound to characterize coronary artery disease and assess the progression or regression of atherosclerosis, Am. J. Cardiol., 89 (2002), 24B-31B. doi: 10.1016/S0002-9149(02)02217-8.

[44]

S. E. Nissen and P. Yock, Intravascular ultrasound: Novel pathophysiological insights and current clinical applications, Circulation, 103 (2001), 604-616. doi: 10.1161/01.CIR.103.4.604.

[45]

N. Owsley and A. Hull, Beamformed nearfield imaging of a simulated coronary artery containing a stenosis, IEEE Trans. Med. Imaging, 17 (1998), 900-909. doi: 10.1109/42.746623.

[46]

N. Owsley, A. J. Hull, M. H. Ahmed and J. Kassal, A proof of concept experiment for the detection of occluded coronary arteries using array sensor technology, Engr. in Medicine and Biol. Society, IEEE 17th Annual Conf., 1 (1995), 145-146. doi: 10.1109/IEMBS.1995.575042.

[47]

V. Padmanabhan and J. Semmlow, A dedicated system for acoustic detection of coronary artery disease, Proc. Eng. in Med. & Biol. Soc., (1992), 457-458. doi: 10.1109/IEMBS.1992.595658.

[48]

T. Pedley, Mathematical modelling of arterial fluid dynamics, J. of Eng. Math., 47 (2003), 419-444. doi: 10.1023/B:ENGI.0000007978.33352.59.

[49]

C. Prado, S. Ramos, J. Elias, Jr., and M. Rossi, Turbulent blood flow plays an essential localizing role in the development of atherosclerotic lesions in experimentally induced hypercholesterolaemia in rats, Int. J. Exp. Path., 89 (2008), 72-80. doi: 10.1111/j.1365-2613.2007.00564.x.

[50]

J. R. Samuels, Jr., Inverse Problems and Post Analysis Techniques for a Stenosis-Driven Acoustic Wave Propagation Model, PhD Dissertation, N.C. State University, Raleigh, 2008.

[51]

L. Sandrin, S. Catheline, M. Tanter, X. Hennequin and M. Fink, Time-resolved pulsed elastography with ultrafast ultrasonic imaging, Ultrasonic Imaging, 21 (1999), 259-272.

[52]

J. Sangster and C. Oakley, Diastolic murmur of coronary artery stenosis, Brit. Heart J., 35 (1973), 840. doi: 10.1136/hrt.35.8.840.

[53]

J. Semmlow and K. Rahalkar, Acoustic detection of coronary artery disease, Annu. Rev. Biomed. Eng, 9 (2007), 449-469. doi: 10.1146/annurev.bioeng.9.060906.151840.

[54]

J. Semmlow, W. Welkowitz, J. Kostis and J. Mackenzie, Coronary artery disease-correlates between diastolic auditory characteristics and coronary artery stenoses, IEEE Trans. on Biomed. Eng., 30 (1983), 136-139. doi: 10.1109/TBME.1983.325211.

[55]

C. Taylor, T. Hughes and C. Zarins, Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: Relevance to atherosclerosis, Annals of Biomed. Eng., 26 (1998), 975-987. doi: 10.1114/1.140.

[56]

J. Verburg and E. van Vollenhoven, Phonocardiography: Physical and technical aspects and clinical uses, in Noninvasive Physiological Measurements (ed. P Rolfe), Academic Press, London (1979), 213-259.

[57]

H. Vermarien and E. van Vollenhoven, The recording of heart vibrations: A problem of vibration measurement on soft tissue, Med. & Biol. Eng. & Comput., 22 (1984), 168-178. doi: 10.1007/BF02446821.

[58]

A. Voss, A. Mix and T. Hübner, Diagnosing aortic valve stenosis by parameter extraction of heart sound signals, Annals of Biomed. Eng., 33 (2005), 1167-1174. doi: 10.1007/s10439-005-5347-x.

[59]

J.-Z. Wang, B. Tie, W. Welkowitz, J. Semmlow and J. Kostis, Modeling sound generation in stenosed coronary arteries, IEEE Trans. on Biomed. Eng., 37 (1990), 1087-1094. doi: 10.1109/10.61034.

[60]

J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.

[61]

M. Zia, B. Griffel, V. Fridman, C. Saponieri and J. Semmlow, Noise detection in heart sound recordings, Conf. Proc. IEEE Eng. Med. Biol. Soc., (2011), 5880-5883. doi: 10.1109/IEMBS.2011.6091454.

[1]

Kun Wang, Yangping Lin, Yinnian He. Asymptotic analysis of the equations of motion for viscoelastic oldroyd fluid. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 657-677. doi: 10.3934/dcds.2012.32.657

[2]

Yinnian He, Yi Li. Asymptotic behavior of linearized viscoelastic flow problem. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 843-856. doi: 10.3934/dcdsb.2008.10.843

[3]

Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551

[4]

Stanisław Migórski, Anna Ochal, Mircea Sofonea. Analysis of a frictional contact problem for viscoelastic materials with long memory. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 687-705. doi: 10.3934/dcdsb.2011.15.687

[5]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic and Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[6]

Masaaki Mizukami. Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2301-2319. doi: 10.3934/dcdsb.2017097

[7]

Masaaki Mizukami. Improvement of conditions for asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 269-278. doi: 10.3934/dcdss.2020015

[8]

Krzysztof Bartosz. Numerical analysis of a nonmonotone dynamic contact problem of a non-clamped piezoelectric viscoelastic body. Evolution Equations and Control Theory, 2020, 9 (4) : 961-980. doi: 10.3934/eect.2020059

[9]

Krzysztof Fujarewicz, Krzysztof Łakomiec. Adjoint sensitivity analysis of a tumor growth model and its application to spatiotemporal radiotherapy optimization. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1131-1142. doi: 10.3934/mbe.2016034

[10]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6131-6154. doi: 10.3934/dcdsb.2021010

[11]

Cristian A. Coclici, Jörg Heiermann, Gh. Moroşanu, W. L. Wendland. Asymptotic analysis of a two--dimensional coupled problem for compressible viscous flows. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 137-163. doi: 10.3934/dcds.2004.10.137

[12]

Qiang Du, Jingyan Zhang. Asymptotic analysis of a diffuse interface relaxation to a nonlocal optimal partition problem. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1443-1461. doi: 10.3934/dcds.2011.29.1443

[13]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[14]

Konstantina Trivisa. Global existence and asymptotic analysis of solutions to a model for the dynamic combustion of compressible fluids. Conference Publications, 2003, 2003 (Special) : 852-863. doi: 10.3934/proc.2003.2003.852

[15]

Serge Nicaise, Cristina Pignotti. Asymptotic analysis of a simple model of fluid-structure interaction. Networks and Heterogeneous Media, 2008, 3 (4) : 787-813. doi: 10.3934/nhm.2008.3.787

[16]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[17]

Jaroslaw Smieja, Malgorzata Kardynska, Arkadiusz Jamroz. The meaning of sensitivity functions in signaling pathways analysis. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2697-2707. doi: 10.3934/dcdsb.2014.19.2697

[18]

Ruotian Gao, Wenxun Xing. Robust sensitivity analysis for linear programming with ellipsoidal perturbation. Journal of Industrial and Management Optimization, 2020, 16 (4) : 2029-2044. doi: 10.3934/jimo.2019041

[19]

Kazimierz Malanowski, Helmut Maurer. Sensitivity analysis for state constrained optimal control problems. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 241-272. doi: 10.3934/dcds.1998.4.241

[20]

Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045

[Back to Top]