-
Previous Article
Dynamics of a predator-prey system with prey subject to Allee effects and disease
- MBE Home
- This Issue
-
Next Article
Coexistence and asymptotic stability in stage-structured predator-prey models
Effects of nutrient enrichment on coevolution of a stoichiometric producer-grazer system
1. | School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, China, China |
References:
[1] |
P. A. Abrams and J. D. Roth, The effects of enrichment of three-species food chains with nonlinear functional response, Ecology, 75 (1994), 1118-1130.
doi: 10.2307/1939435. |
[2] |
A. N. Mizuno and M. Kawata, The effects of the evolution of stoichiometry-related traits on population dynamics in plankton communities, J. Theor. Biol., 259 (2009), 209-218.
doi: 10.1016/j.jtbi.2009.02.025. |
[3] |
D. M. Anderson, P. M. Glibert and J. M. Burkholder, Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences, Estuaties, 25 (2002), 704-726.
doi: 10.1007/BF02804901. |
[4] |
A. Binzer, C. Guill, U. Brose and B. C. Rall, The dynamics of food chains under climate change and nutrient enrichment, Phil. Trans. R. Soc. B, 367 (2012), 2935-2944.
doi: 10.1098/rstb.2012.0230. |
[5] |
P. Branco, M. Stomp, M. Egas and J. Huisman, Evolution of nutrient uptake reveals a trade-off in the ecological stoichiometry of plant-herbivore interactions, Am. Nat., 176 (2010), 162-176.
doi: 10.1086/657036. |
[6] |
S. Chisholm, Phytoplankton size, In Primary Productivity and Biogeochemical Cycles in the Sea, 43 (1992), 213-237.
doi: 10.1007/978-1-4899-0762-2_12. |
[7] |
M. Cortez and S. P. Ellner, Understanding rapid evolution in predator-prey interactions using the theory of fast-slow dynamical systems, Am. Nat., 176 (2010), E109-E127.
doi: 10.1086/656485. |
[8] |
J. M. Davis, A. D. Rosemond, S. L. Eggert, W. F. Cross and J. B. Wallace, Long-term nutrient enrichment decouples predator and prey production, Proc. Natl. Acad. Sci. USA, 107 (2010), 121-126.
doi: 10.1073/pnas.0908497107. |
[9] |
U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biol., 34 (1996), 579-612.
doi: 10.1007/BF02409751. |
[10] |
U. Dieckmann, P. Marrow and R. Law, Evolutionary cycling in predator-prey interactions: Population dynamics and the red queen, J. Theor. Biol., 176 (1995), 91-102.
doi: 10.1006/jtbi.1995.0179. |
[11] |
S. Diehl, Paradoxes of enrichment: Effects of increased light versus nutrient supply on pelagic producer-grazer system, Am. Nat., 169 (2007), 173-191.
doi: 10.1086/516655. |
[12] |
S. Diehl and M. Feißel, Effects of enrichment on three-level food chainswith omnivory, Am. Nat., 155 (2000), 200-218.
doi: 10.1086/303319. |
[13] |
M. Doebeli and U. Dieckmann, Evolutionary branching and sympatric speciation caused by different types of ecological interactions, Am. Nat., 156 (2000), S77-S101.
doi: 10.1086/303417. |
[14] |
M. R. Droop, Vitamin $b_{12}$ and marine ecology. iv. the kinetics of uptake, growth and inhibition in monochrysis lutheri, J. Mar. Biol. Assoc. UK, 48 (1968), 689-733. |
[15] |
T. H. G. Ezard, S. D. Côté and F. Pelletier, Eco-evolutionary dynamics: Disentangling phenotypic, environmental and population fluctuations, Phil. Trans. R. Soc. B, 364 (2009), 1491-1498.
doi: 10.1098/rstb.2009.0006. |
[16] |
Z. V. Finkel, M. E. Katz, J. D. Wright, O. M. E Schofield and P. G. Falkowski, Climatically driven macroevolutionary patterns in the size of marine diatoms over the cenozoic, Proc. Natl. Acad. Sci. USA, 102 (2005), 8927-8932.
doi: 10.1073/pnas.0409907102. |
[17] |
Z. V. Finkel, J. Beardall, K. J. Flynn, A. Quigg, T. A. Rees and J. Raven, Phytoplankton in a changing world: Cell size and elemental stoichiometry, J. Plankton. Res., 32 (2010), 119-137.
doi: 10.1093/plankt/fbp098. |
[18] |
G. F. Fussmann, S. P. Ellner and N. G. Hairston, Evolution as a critical component of plankton dynamics, Proc. R. Soc. Lond. B, 270 (2003), 1015-1022.
doi: 10.1098/rspb.2003.2335. |
[19] |
G. F. Fussmann, M. Loreau and P. A. Abrams, Eco-evolutionary dynamics of communities and ecosystems, Funct. Ecol., 21 (2007), 465-477.
doi: 10.1111/j.1365-2435.2007.01275.x. |
[20] |
S. A. H. Geritz and M. Gyllenberg, Seven answers from adaptive dynamics, J. EVOL. BIOL., 18 (2005), 1174-1177.
doi: 10.1111/j.1420-9101.2004.00841.x. |
[21] |
S. A. H. Geritz, E. Kisdi, G. Meszéna and J. A. J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12 (1998), 35-57.
doi: 10.1023/A:1006554906681. |
[22] |
L. Jiang, O. M. E. Schofield and P. G. Falkowski, Adaptive evolution of phytoplankton cell size, Am. Nat., 166 (2005), 496-505.
doi: 10.1086/444442. |
[23] |
M. D. John, A. D. Rosemond, S. L. Eggert, W. F. Cross and J. B. Wallace, Nutrient enrichment differentially affects body sizes of primary consumers and predators in a detritus-based stream, Limnol. Oceanogr., 55 (2010), 2305-2316.
doi: 10.4319/lo.2010.55.6.2305. |
[24] |
L. E. Jones, L. Becks, S. P. Ellner, N. G. Hairston, T. Yoshida and G. F. Fussmann, Rapid contemporary evolution and clonal food web dynamics, Phil. Trans. R. Soc. B, 364 (2009), 1579-1591.
doi: 10.1098/rstb.2009.0004. |
[25] |
E. Kisdi, Evolutionary branching under asymmetric competition, J. Theor. Biol., 197 (1999), 149-162.
doi: 10.1006/jtbi.1998.0864. |
[26] |
C. A. Klausmeier, E. Litchman and S. A. Levin, A model of flexible uptake of two essential resources, J. Theor. Biol., 246 (2007), 278-289.
doi: 10.1016/j.jtbi.2006.12.032. |
[27] |
X. Li, H. Wang and Y. Kuang, Global analysis of a stoichiometric producer-grazer model with Holling type functional responses, J. Math. Biol., 63 (2011), 901-932.
doi: 10.1007/s00285-010-0392-2. |
[28] |
N. Loeuille and M. Loreau, Nutrient enrichment and food chains: Can evolution buffer top-down control? Theor. Popul. Biol., 65 (2004), 285-298.
doi: 10.1016/j.tpb.2003.12.004. |
[29] |
N. Loeuille and M. Loreau, Evolutionary emergence of size-structured food webs, Proc. Natl. Acad. Sci. USA, 102 (2005), 5761-5766.
doi: 10.1073/pnas.0408424102. |
[30] |
N. Loeuille, M. Loreau and R. Ferrière, Consequences of plant-herbivore coevolution on the dynamics and functioning of ecosystems, J. Theor. Biol., 217 (2002), 369-381.
doi: 10.1006/jtbi.2002.3032. |
[31] |
I. Loladze, Y. Kuang and J. J. Elser, Stoichiometry in producer-grazer systems: Linking energy flow and element cycling, Bull. Math. Biol., 62 (2000), 1137-1162.
doi: 10.1006/bulm.2000.0201. |
[32] |
M. Loreau, Ecosystem development explained by competition within and between material cycles, Proc. R. Soc. Lond. B, 265 (1998), 33-38.
doi: 10.1098/rspb.1998.0260. |
[33] |
A. Mougi and Y. Iwasa, Evolution towards oscillation or stability in a predator-prey system, Proc. R. Soc. B, 277 (2010), 3163-3171.
doi: 10.1098/rspb.2010.0691. |
[34] |
A. Mougi and Y. Iwasa, Unique coevolutionary dynamics in a predator-prey system, J. Theor. Biol., 277 (2011), 83-89.
doi: 10.1016/j.jtbi.2011.02.015. |
[35] |
E. B. Muller, R. M. Nisbet, S. A. L. M Kooijman, J. J. Elser and E. McCauley, Stoichiometric food quality and herbivore dynamics, Ecol. Lett., 4 (2001), 519-529.
doi: 10.1046/j.1461-0248.2001.00240.x. |
[36] |
D. Pimentel, Animal population regulation by the genetic feed-back mechanism, Am. Nat., 95 (1961), 65-79.
doi: 10.1086/282160. |
[37] |
J. A. Raven, Physiological consequences of extremely small size for autotrophic organisms on the sea, Can. Bull. Fish. Aquat. Sci., 214 (1986), 1-70. |
[38] |
J. A. Raven, Why are there no picoplanktonic $o_2$ evolvers with volumes less than $10^{-19} m^3$? J. Plankton. Res., 16 (1994), 565-580.
doi: 10.1093/plankt/16.5.565. |
[39] |
M. L. Rosenzweig, Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time, Science, 171 (1971), 385-387.
doi: 10.1126/science.171.3969.385. |
[40] |
R. W. Sterner and J. J. Elser, Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere, NJ: Princeton University Press, Princeton, 2002. |
[41] |
D. Stiefs, G. A. K. Van Voorn, B. W. Kooi, U. Feudel and T. Gross, Food quality in producer-grazer models-: A generalized analysis, Am. Nat., 176 (2010), 367-380.
doi: 10.1086/655429. |
[42] |
A. Verdy, M. Follows and G. Flierl, Optimal phytoplankton cell size in an allometric model, Mar. Ecol. Prog. Ser., 379 (2009), 1-12.
doi: 10.3354/meps07909. |
[43] |
H. Wang, H. L. Smith, Y. Kuang and J. J. Elser, Dynamics of stoichiometric bacteria-algae interaction in epilimnion, SIAM J. Appl. Math., 68 (2007), 503-522.
doi: 10.1137/060665919. |
[44] |
D. Waxman and S. Gavrilets, 20 questions on adaptive dynamics, J. Evol. Biol., 18 (2005), 1139-1154.
doi: 10.1111/j.1420-9101.2005.00948.x. |
[45] |
T. G. Whitham, J. K. Bailey and J. A. Schweitzer et al, A framework for community and ecosystem genetics: From genes to ecosystems, Nature Reviews Genetics, 7 (2006), 510-523.
doi: 10.1038/nrg1877. |
[46] |
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 1990. |
[47] |
T. Yoshida, L. E. Jones, S. P. Ellner, G. F. Fussmann and Jr N. G. Hairston, Rapid evolution drives ecological dynamics in a predator-prey system, Nature, 424 (2003), 303-306.
doi: 10.1038/nature01767. |
[48] |
J. Zu, M. Mimura and J. Y. Wakano, The evolution of phenotypic traits in a predator-prey system subject to Allee effect, J. Theor. Biol., 262 (2010), 528-543.
doi: 10.1016/j.jtbi.2009.10.022. |
show all references
References:
[1] |
P. A. Abrams and J. D. Roth, The effects of enrichment of three-species food chains with nonlinear functional response, Ecology, 75 (1994), 1118-1130.
doi: 10.2307/1939435. |
[2] |
A. N. Mizuno and M. Kawata, The effects of the evolution of stoichiometry-related traits on population dynamics in plankton communities, J. Theor. Biol., 259 (2009), 209-218.
doi: 10.1016/j.jtbi.2009.02.025. |
[3] |
D. M. Anderson, P. M. Glibert and J. M. Burkholder, Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences, Estuaties, 25 (2002), 704-726.
doi: 10.1007/BF02804901. |
[4] |
A. Binzer, C. Guill, U. Brose and B. C. Rall, The dynamics of food chains under climate change and nutrient enrichment, Phil. Trans. R. Soc. B, 367 (2012), 2935-2944.
doi: 10.1098/rstb.2012.0230. |
[5] |
P. Branco, M. Stomp, M. Egas and J. Huisman, Evolution of nutrient uptake reveals a trade-off in the ecological stoichiometry of plant-herbivore interactions, Am. Nat., 176 (2010), 162-176.
doi: 10.1086/657036. |
[6] |
S. Chisholm, Phytoplankton size, In Primary Productivity and Biogeochemical Cycles in the Sea, 43 (1992), 213-237.
doi: 10.1007/978-1-4899-0762-2_12. |
[7] |
M. Cortez and S. P. Ellner, Understanding rapid evolution in predator-prey interactions using the theory of fast-slow dynamical systems, Am. Nat., 176 (2010), E109-E127.
doi: 10.1086/656485. |
[8] |
J. M. Davis, A. D. Rosemond, S. L. Eggert, W. F. Cross and J. B. Wallace, Long-term nutrient enrichment decouples predator and prey production, Proc. Natl. Acad. Sci. USA, 107 (2010), 121-126.
doi: 10.1073/pnas.0908497107. |
[9] |
U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biol., 34 (1996), 579-612.
doi: 10.1007/BF02409751. |
[10] |
U. Dieckmann, P. Marrow and R. Law, Evolutionary cycling in predator-prey interactions: Population dynamics and the red queen, J. Theor. Biol., 176 (1995), 91-102.
doi: 10.1006/jtbi.1995.0179. |
[11] |
S. Diehl, Paradoxes of enrichment: Effects of increased light versus nutrient supply on pelagic producer-grazer system, Am. Nat., 169 (2007), 173-191.
doi: 10.1086/516655. |
[12] |
S. Diehl and M. Feißel, Effects of enrichment on three-level food chainswith omnivory, Am. Nat., 155 (2000), 200-218.
doi: 10.1086/303319. |
[13] |
M. Doebeli and U. Dieckmann, Evolutionary branching and sympatric speciation caused by different types of ecological interactions, Am. Nat., 156 (2000), S77-S101.
doi: 10.1086/303417. |
[14] |
M. R. Droop, Vitamin $b_{12}$ and marine ecology. iv. the kinetics of uptake, growth and inhibition in monochrysis lutheri, J. Mar. Biol. Assoc. UK, 48 (1968), 689-733. |
[15] |
T. H. G. Ezard, S. D. Côté and F. Pelletier, Eco-evolutionary dynamics: Disentangling phenotypic, environmental and population fluctuations, Phil. Trans. R. Soc. B, 364 (2009), 1491-1498.
doi: 10.1098/rstb.2009.0006. |
[16] |
Z. V. Finkel, M. E. Katz, J. D. Wright, O. M. E Schofield and P. G. Falkowski, Climatically driven macroevolutionary patterns in the size of marine diatoms over the cenozoic, Proc. Natl. Acad. Sci. USA, 102 (2005), 8927-8932.
doi: 10.1073/pnas.0409907102. |
[17] |
Z. V. Finkel, J. Beardall, K. J. Flynn, A. Quigg, T. A. Rees and J. Raven, Phytoplankton in a changing world: Cell size and elemental stoichiometry, J. Plankton. Res., 32 (2010), 119-137.
doi: 10.1093/plankt/fbp098. |
[18] |
G. F. Fussmann, S. P. Ellner and N. G. Hairston, Evolution as a critical component of plankton dynamics, Proc. R. Soc. Lond. B, 270 (2003), 1015-1022.
doi: 10.1098/rspb.2003.2335. |
[19] |
G. F. Fussmann, M. Loreau and P. A. Abrams, Eco-evolutionary dynamics of communities and ecosystems, Funct. Ecol., 21 (2007), 465-477.
doi: 10.1111/j.1365-2435.2007.01275.x. |
[20] |
S. A. H. Geritz and M. Gyllenberg, Seven answers from adaptive dynamics, J. EVOL. BIOL., 18 (2005), 1174-1177.
doi: 10.1111/j.1420-9101.2004.00841.x. |
[21] |
S. A. H. Geritz, E. Kisdi, G. Meszéna and J. A. J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12 (1998), 35-57.
doi: 10.1023/A:1006554906681. |
[22] |
L. Jiang, O. M. E. Schofield and P. G. Falkowski, Adaptive evolution of phytoplankton cell size, Am. Nat., 166 (2005), 496-505.
doi: 10.1086/444442. |
[23] |
M. D. John, A. D. Rosemond, S. L. Eggert, W. F. Cross and J. B. Wallace, Nutrient enrichment differentially affects body sizes of primary consumers and predators in a detritus-based stream, Limnol. Oceanogr., 55 (2010), 2305-2316.
doi: 10.4319/lo.2010.55.6.2305. |
[24] |
L. E. Jones, L. Becks, S. P. Ellner, N. G. Hairston, T. Yoshida and G. F. Fussmann, Rapid contemporary evolution and clonal food web dynamics, Phil. Trans. R. Soc. B, 364 (2009), 1579-1591.
doi: 10.1098/rstb.2009.0004. |
[25] |
E. Kisdi, Evolutionary branching under asymmetric competition, J. Theor. Biol., 197 (1999), 149-162.
doi: 10.1006/jtbi.1998.0864. |
[26] |
C. A. Klausmeier, E. Litchman and S. A. Levin, A model of flexible uptake of two essential resources, J. Theor. Biol., 246 (2007), 278-289.
doi: 10.1016/j.jtbi.2006.12.032. |
[27] |
X. Li, H. Wang and Y. Kuang, Global analysis of a stoichiometric producer-grazer model with Holling type functional responses, J. Math. Biol., 63 (2011), 901-932.
doi: 10.1007/s00285-010-0392-2. |
[28] |
N. Loeuille and M. Loreau, Nutrient enrichment and food chains: Can evolution buffer top-down control? Theor. Popul. Biol., 65 (2004), 285-298.
doi: 10.1016/j.tpb.2003.12.004. |
[29] |
N. Loeuille and M. Loreau, Evolutionary emergence of size-structured food webs, Proc. Natl. Acad. Sci. USA, 102 (2005), 5761-5766.
doi: 10.1073/pnas.0408424102. |
[30] |
N. Loeuille, M. Loreau and R. Ferrière, Consequences of plant-herbivore coevolution on the dynamics and functioning of ecosystems, J. Theor. Biol., 217 (2002), 369-381.
doi: 10.1006/jtbi.2002.3032. |
[31] |
I. Loladze, Y. Kuang and J. J. Elser, Stoichiometry in producer-grazer systems: Linking energy flow and element cycling, Bull. Math. Biol., 62 (2000), 1137-1162.
doi: 10.1006/bulm.2000.0201. |
[32] |
M. Loreau, Ecosystem development explained by competition within and between material cycles, Proc. R. Soc. Lond. B, 265 (1998), 33-38.
doi: 10.1098/rspb.1998.0260. |
[33] |
A. Mougi and Y. Iwasa, Evolution towards oscillation or stability in a predator-prey system, Proc. R. Soc. B, 277 (2010), 3163-3171.
doi: 10.1098/rspb.2010.0691. |
[34] |
A. Mougi and Y. Iwasa, Unique coevolutionary dynamics in a predator-prey system, J. Theor. Biol., 277 (2011), 83-89.
doi: 10.1016/j.jtbi.2011.02.015. |
[35] |
E. B. Muller, R. M. Nisbet, S. A. L. M Kooijman, J. J. Elser and E. McCauley, Stoichiometric food quality and herbivore dynamics, Ecol. Lett., 4 (2001), 519-529.
doi: 10.1046/j.1461-0248.2001.00240.x. |
[36] |
D. Pimentel, Animal population regulation by the genetic feed-back mechanism, Am. Nat., 95 (1961), 65-79.
doi: 10.1086/282160. |
[37] |
J. A. Raven, Physiological consequences of extremely small size for autotrophic organisms on the sea, Can. Bull. Fish. Aquat. Sci., 214 (1986), 1-70. |
[38] |
J. A. Raven, Why are there no picoplanktonic $o_2$ evolvers with volumes less than $10^{-19} m^3$? J. Plankton. Res., 16 (1994), 565-580.
doi: 10.1093/plankt/16.5.565. |
[39] |
M. L. Rosenzweig, Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time, Science, 171 (1971), 385-387.
doi: 10.1126/science.171.3969.385. |
[40] |
R. W. Sterner and J. J. Elser, Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere, NJ: Princeton University Press, Princeton, 2002. |
[41] |
D. Stiefs, G. A. K. Van Voorn, B. W. Kooi, U. Feudel and T. Gross, Food quality in producer-grazer models-: A generalized analysis, Am. Nat., 176 (2010), 367-380.
doi: 10.1086/655429. |
[42] |
A. Verdy, M. Follows and G. Flierl, Optimal phytoplankton cell size in an allometric model, Mar. Ecol. Prog. Ser., 379 (2009), 1-12.
doi: 10.3354/meps07909. |
[43] |
H. Wang, H. L. Smith, Y. Kuang and J. J. Elser, Dynamics of stoichiometric bacteria-algae interaction in epilimnion, SIAM J. Appl. Math., 68 (2007), 503-522.
doi: 10.1137/060665919. |
[44] |
D. Waxman and S. Gavrilets, 20 questions on adaptive dynamics, J. Evol. Biol., 18 (2005), 1139-1154.
doi: 10.1111/j.1420-9101.2005.00948.x. |
[45] |
T. G. Whitham, J. K. Bailey and J. A. Schweitzer et al, A framework for community and ecosystem genetics: From genes to ecosystems, Nature Reviews Genetics, 7 (2006), 510-523.
doi: 10.1038/nrg1877. |
[46] |
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 1990. |
[47] |
T. Yoshida, L. E. Jones, S. P. Ellner, G. F. Fussmann and Jr N. G. Hairston, Rapid evolution drives ecological dynamics in a predator-prey system, Nature, 424 (2003), 303-306.
doi: 10.1038/nature01767. |
[48] |
J. Zu, M. Mimura and J. Y. Wakano, The evolution of phenotypic traits in a predator-prey system subject to Allee effect, J. Theor. Biol., 262 (2010), 528-543.
doi: 10.1016/j.jtbi.2009.10.022. |
[1] |
Liman Dai, Xingfu Zou. Effects of superinfection and cost of immunity on host-parasite co-evolution. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 809-829. doi: 10.3934/dcdsb.2017040 |
[2] |
Yang Kuang, John D. Nagy, James J. Elser. Biological stoichiometry of tumor dynamics: Mathematical models and analysis. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 221-240. doi: 10.3934/dcdsb.2004.4.221 |
[3] |
Kolade M. Owolabi, Kailash C. Patidar, Albert Shikongo. Efficient numerical method for a model arising in biological stoichiometry of tumour dynamics. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 591-613. doi: 10.3934/dcdss.2019038 |
[4] |
Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283 |
[5] |
Expeditho Mtisi, Herieth Rwezaura, Jean Michel Tchuenche. A mathematical analysis of malaria and tuberculosis co-dynamics. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 827-864. doi: 10.3934/dcdsb.2009.12.827 |
[6] |
Ahuod Alsheri, Ebraheem O. Alzahrani, Asim Asiri, Mohamed M. El-Dessoky, Yang Kuang. Tumor growth dynamics with nutrient limitation and cell proliferation time delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3771-3782. doi: 10.3934/dcdsb.2017189 |
[7] |
Sze-Bi Hsu, Chiu-Ju Lin. Dynamics of two phytoplankton species competing for light and nutrient with internal storage. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1259-1285. doi: 10.3934/dcdss.2014.7.1259 |
[8] |
Zhipeng Qiu, Huaiping Zhu. Complex dynamics of a nutrient-plankton system with nonlinear phytoplankton mortality and allelopathy. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2703-2728. doi: 10.3934/dcdsb.2016069 |
[9] |
Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2115-2132. doi: 10.3934/dcdsb.2020359 |
[10] |
Kazeem Oare Okosun, Robert Smith?. Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences & Engineering, 2017, 14 (2) : 377-405. doi: 10.3934/mbe.2017024 |
[11] |
Miguel A. Dumett, Roberto Cominetti. On the stability of an adaptive learning dynamics in traffic games. Journal of Dynamics and Games, 2018, 5 (4) : 265-282. doi: 10.3934/jdg.2018017 |
[12] |
Jian-Guo Liu, Min Tang, Li Wang, Zhennan Zhou. Analysis and computation of some tumor growth models with nutrient: From cell density models to free boundary dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3011-3035. doi: 10.3934/dcdsb.2018297 |
[13] |
Marcello Delitala, Tommaso Lorenzi. Emergence of spatial patterns in a mathematical model for the co-culture dynamics of epithelial-like and mesenchymal-like cells. Mathematical Biosciences & Engineering, 2017, 14 (1) : 79-93. doi: 10.3934/mbe.2017006 |
[14] |
Yanyan Shi, Yajuan Sun, Yulei Wang, Jian Liu. Study of adaptive symplectic methods for simulating charged particle dynamics. Journal of Computational Dynamics, 2019, 6 (2) : 429-448. doi: 10.3934/jcd.2019022 |
[15] |
Dmitri Finkelshtein, Yuri Kondratiev, Yuri Kozitsky. Glauber dynamics in continuum: A constructive approach to evolution of states. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1431-1450. doi: 10.3934/dcds.2013.33.1431 |
[16] |
Georgy P. Karev. Dynamics of heterogeneous populations and communities and evolution of distributions. Conference Publications, 2005, 2005 (Special) : 487-496. doi: 10.3934/proc.2005.2005.487 |
[17] |
Jacson Simsen, Mariza Stefanello Simsen. On asymptotically autonomous dynamics for multivalued evolution problems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3557-3567. doi: 10.3934/dcdsb.2018278 |
[18] |
Emile Franc Doungmo Goufo. Bounded perturbation for evolution equations with a parameter & application to population dynamics. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2137-2150. doi: 10.3934/dcdss.2020177 |
[19] |
Emiliano Alvarez, Juan Gabriel Brida, Lucía Rosich, Erick Limas. Analysis of communities of countries with similar dynamics of the COVID-19 pandemic evolution. Journal of Dynamics and Games, 2022, 9 (1) : 75-96. doi: 10.3934/jdg.2021026 |
[20] |
Juan Manuel Pastor, Silvia Santamaría, Marcos Méndez, Javier Galeano. Effects of topology on robustness in ecological bipartite networks. Networks and Heterogeneous Media, 2012, 7 (3) : 429-440. doi: 10.3934/nhm.2012.7.429 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]