# American Institute of Mathematical Sciences

2014, 11(4): 877-918. doi: 10.3934/mbe.2014.11.877

## Dynamics of a predator-prey system with prey subject to Allee effects and disease

 1 Science and Mathematics Faculty, School of Letters and Sciences, Arizona State University, Mesa, AZ 85212 2 Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India, India, India

Received  March 2013 Revised  September 2013 Published  March 2014

In this article, we propose a general predator-prey system where prey is subject to Allee effects and disease with the following unique features: (i) Allee effects built in the reproduction process of prey where infected prey (I-class) has no contribution; (ii) Consuming infected prey would contribute less or negatively to the growth rate of predator (P-class) in comparison to the consumption of susceptible prey (S-class). We provide basic dynamical properties for this general model and perform the detailed analysis on a concrete model (SIP-Allee Model) as well as its corresponding model in the absence of Allee effects (SIP-no-Allee Model); we obtain the complete dynamics of both models: (a) SIP-Allee Model may have only one attractor (extinction of all species), two attractors (bi-stability either induced by small values of reproduction number of both disease and predator or induced by competition exclusion), or three attractors (tri-stability); (b) SIP-no-Allee Model may have either one attractor (only S-class survives or the persistence of S and I-class or the persistence of S and P-class) or two attractors (bi-stability with the persistence of S and I-class or the persistence of S and P-class). One of the most interesting findings is that neither models can support the coexistence of all three S, I, P-class. This is caused by the assumption (ii), whose biological implications are that I and P-class are at exploitative competition for S-class whereas I-class cannot be superior and P-class cannot gain significantly from its consumption of I-class. In addition, the comparison study between the dynamics of SIP-Allee Model and SIP-no-Allee Model lead to the following conclusions: 1) In the presence of Allee effects, species are prone to extinction and initial condition plays an important role on the surviving of prey as well as its corresponding predator; 2) In the presence of Allee effects, disease may be able to save prey from the predation-driven extinction and leads to the coexistence of S and I-class while predator can not save the disease-driven extinction. All these findings may have potential applications in conservation biology.
Citation: Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay. Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences & Engineering, 2014, 11 (4) : 877-918. doi: 10.3934/mbe.2014.11.877
##### References:

show all references

##### References:
 [1] Qiumei Zhang, Daqing Jiang, Li Zu. The stability of a perturbed eco-epidemiological model with Holling type II functional response by white noise. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 295-321. doi: 10.3934/dcdsb.2015.20.295 [2] Jing Li, Zhen Jin, Gui-Quan Sun, Li-Peng Song. Pattern dynamics of a delayed eco-epidemiological model with disease in the predator. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1025-1042. doi: 10.3934/dcdss.2017054 [3] Lopo F. de Jesus, César M. Silva, Helder Vilarinho. Random perturbations of an eco-epidemiological model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 257-275. doi: 10.3934/dcdsb.2021040 [4] Wonlyul Ko, Inkyung Ahn. Pattern formation of a diffusive eco-epidemiological model with predator-prey interaction. Communications on Pure and Applied Analysis, 2018, 17 (2) : 375-389. doi: 10.3934/cpaa.2018021 [5] Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129 [6] Yun Kang, Carlos Castillo-Chávez. A simple epidemiological model for populations in the wild with Allee effects and disease-modified fitness. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 89-130. doi: 10.3934/dcdsb.2014.19.89 [7] Guohong Zhang, Xiaoli Wang. Extinction and coexistence of species for a diffusive intraguild predation model with B-D functional response. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3755-3786. doi: 10.3934/dcdsb.2018076 [8] J. Leonel Rocha, Abdel-Kaddous Taha, Danièle Fournier-Prunaret. Explosion birth and extinction: Double big bang bifurcations and Allee effect in Tsoularis-Wallace's growth models. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3131-3163. doi: 10.3934/dcdsb.2015.20.3131 [9] Nika Lazaryan, Hassan Sedaghat. Extinction and the Allee effect in an age structured Ricker population model with inter-stage interaction. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 731-747. doi: 10.3934/dcdsb.2018040 [10] Wisdom S. Avusuglo, Kenzu Abdella, Wenying Feng. Stability analysis on an economic epidemiological model with vaccination. Mathematical Biosciences & Engineering, 2017, 14 (4) : 975-999. doi: 10.3934/mbe.2017051 [11] Lizhi Fei, Xingwu Chen. Bifurcation and control of a predator-prey system with unfixed functional responses. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021292 [12] Yincui Yan, Wendi Wang. Global stability of a five-dimensional model with immune responses and delay. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 401-416. doi: 10.3934/dcdsb.2012.17.401 [13] Mustapha Ait Rami, Vahid S. Bokharaie, Oliver Mason, Fabian R. Wirth. Stability criteria for SIS epidemiological models under switching policies. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2865-2887. doi: 10.3934/dcdsb.2014.19.2865 [14] C. Connell McCluskey. Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences & Engineering, 2009, 6 (3) : 603-610. doi: 10.3934/mbe.2009.6.603 [15] Jing-Jing Xiang, Juan Wang, Li-Ming Cai. Global stability of the dengue disease transmission models. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2217-2232. doi: 10.3934/dcdsb.2015.20.2217 [16] Radu Strugariu, Mircea D. Voisei, Constantin Zălinescu. Counter-examples in bi-duality, triality and tri-duality. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1453-1468. doi: 10.3934/dcds.2011.31.1453 [17] Mostafa Fazly, Mahmoud Hesaaraki. Periodic solutions for a semi-ratio-dependent predator-prey dynamical system with a class of functional responses on time scales. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 267-279. doi: 10.3934/dcdsb.2008.9.267 [18] Alina Macacu, Dominique J. Bicout. Effect of the epidemiological heterogeneity on the outbreak outcomes. Mathematical Biosciences & Engineering, 2017, 14 (3) : 735-754. doi: 10.3934/mbe.2017041 [19] Eduardo González-Olivares, Betsabé González-Yañez, Jaime Mena-Lorca, José D. Flores. Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey. Mathematical Biosciences & Engineering, 2013, 10 (2) : 345-367. doi: 10.3934/mbe.2013.10.345 [20] Elena Braverman, Alexandra Rodkina. Stochastic difference equations with the Allee effect. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5929-5949. doi: 10.3934/dcds.2016060

2018 Impact Factor: 1.313