-
Previous Article
Change detection in the dynamics of an intracellular protein synthesis model using nonlinear Kalman filtering
- MBE Home
- This Issue
-
Next Article
Multi-host transmission dynamics of schistosomiasis and its optimal control
Order reduction for an RNA virus evolution model
1. | Centre de Recerca Matemática, Campus de Bellaterra, Edifici C, 08193 Barcelona, Spain |
2. | Department of Applied Mathematics, Samara State Aerospace University (SSAU), 443086 Samara, 34, Moskovskoye shosse, Russian Federation |
3. | Department of Technical Cybernetics, Samara State Aerospace University (SSAU), 443086 Samara, 34, Moskovskoye shosse, Russian Federation |
References:
[1] |
V. F. Butuzov, N. N. Nefedov, L. Recke and K. R. Schnieder, Global region of attraction of a periodic solution to a singularly perturbed parabolic problem, Applicable Analysis, 91 (2012), 1265-1277.
doi: 10.1080/00036811.2011.567192. |
[2] |
L. H. Erbe and D. J. Guo, Method of upper and lower solutions for nonlinear integro-differential equations of mixed type in Banach spaces, Applicable Analysis, 52 (1994), 143-154.
doi: 10.1080/00036819408840230. |
[3] |
Y. Haraguchi and A. Sasaki, Evolutionary pattern of intra-host pathogen antigenic drift: effect of crossreactivity in immune response, Phil. Trans. R. Soc. B, 352 (1997), 11-20.
doi: 10.1098/rstb.1997.0002. |
[4] |
H. K. Khalil, Stability analysis of nonlinear multiparameter singularly perturbed systems, IEEE Trans. Aut. Control, 32 (1987), 260-263.
doi: 10.1109/TAC.1987.1104564. |
[5] |
A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883.
doi: 10.1016/j.bulm.2004.02.001. |
[6] |
A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose dependent parasite reproduction and virulence, and nonlinear incidence rate, Math. Med. Biol., 26 (2009), 225-239. |
[7] |
A. Korobeinokov, Stability of ecosystem: Global properties of a general prey-predator model, Math. Med. Biol., 26 (2009), 309-321.
doi: 10.1093/imammb/dqp009. |
[8] |
A. Korobeinikov and C. Dempsey, A continuous phenotype space model of RNA virus evolution within a host, Math. Biosci. Eng., 11 (2014), 919-927.
doi: 10.3934/mbe.2014.11.919. |
[9] |
X. Lai, Sh. Liu and R. Lin, Rich dynamical behaviors for predator-prey model with weak Allee effect, Applicable Analysis, 89 (2010), 1271-1292.
doi: 10.1080/00036811.2010.483557. |
[10] |
M. P. Mortell, R. E. O'Malley, A. Pokrovskii and V. A. Sobolev, Singular Perturbation and Hysteresis, SIAM, Philadelphia, 2005.
doi: 10.1137/1.9780898717860. |
[11] |
N. N. Nefedov and A. G. Nikitin, The Cauchy problem for a singularly perturbed integro-differential Fredholm equation, Computational Mathematics and Mathematical Physics, 47 (2007), 629-637.
doi: 10.1134/S0965542507040082. |
[12] |
M. A. Nowak and R. M. May, Virus dynamics: Mathematical principles of Immunology and Virology, Oxford University Press, New York, 2000. |
[13] |
A. Sasaki, Evolution of antigenic drift/switching: Continuously evading pathogens, J. Theor. Biol., 168 (1994), 291-308.
doi: 10.1006/jtbi.1994.1110. |
[14] |
A. Sasaki and Y. Haraguchi, Antigenic drift of viruses within a host: A finite site model with demographic stochasticity, J. Mol. Evol, 51 (2000), 245-255. |
[15] |
M. A. Stafford, L. Corey, Y. Cao, E. S. Daar, D. D. Ho and A. S. Perlson, Modeling plasma virus concentration during primary HIV infection, J. Theor. Biol., 203 (2000), 285-301.
doi: 10.1006/jtbi.2000.1076. |
[16] |
L. S. Tsimring, H. Levine and D. A. Kessler, RNA virus evolution via a fitness-space model, Phys. Rev. Lett., 76 (1996), 4440-4443.
doi: 10.1103/PhysRevLett.76.4440. |
[17] |
C. Vargas-De-León and A. Korobeinikov, Global stability of a population dynamics model with inhibition and negative feedback, Math. Med. Biol., 30 (2013), 65-72.
doi: 10.1093/imammb/dqr027. |
[18] |
A. B. Vasilieva, V. F. Butuzov and L. V. Kalachev, The Boundary Function Method for Singular Perturbation Problems, SIAM, Philadelphia, 1995.
doi: 10.1137/1.9781611970784. |
[19] |
D. Wodarz, J. P. Christensen and A. R. Thomsen, The importance of lytic and nonlytic immune responses in viral infections, TRENDS in Immunology, 23 (2002), 194-200.
doi: 10.1016/S1471-4906(02)02189-0. |
show all references
References:
[1] |
V. F. Butuzov, N. N. Nefedov, L. Recke and K. R. Schnieder, Global region of attraction of a periodic solution to a singularly perturbed parabolic problem, Applicable Analysis, 91 (2012), 1265-1277.
doi: 10.1080/00036811.2011.567192. |
[2] |
L. H. Erbe and D. J. Guo, Method of upper and lower solutions for nonlinear integro-differential equations of mixed type in Banach spaces, Applicable Analysis, 52 (1994), 143-154.
doi: 10.1080/00036819408840230. |
[3] |
Y. Haraguchi and A. Sasaki, Evolutionary pattern of intra-host pathogen antigenic drift: effect of crossreactivity in immune response, Phil. Trans. R. Soc. B, 352 (1997), 11-20.
doi: 10.1098/rstb.1997.0002. |
[4] |
H. K. Khalil, Stability analysis of nonlinear multiparameter singularly perturbed systems, IEEE Trans. Aut. Control, 32 (1987), 260-263.
doi: 10.1109/TAC.1987.1104564. |
[5] |
A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883.
doi: 10.1016/j.bulm.2004.02.001. |
[6] |
A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose dependent parasite reproduction and virulence, and nonlinear incidence rate, Math. Med. Biol., 26 (2009), 225-239. |
[7] |
A. Korobeinokov, Stability of ecosystem: Global properties of a general prey-predator model, Math. Med. Biol., 26 (2009), 309-321.
doi: 10.1093/imammb/dqp009. |
[8] |
A. Korobeinikov and C. Dempsey, A continuous phenotype space model of RNA virus evolution within a host, Math. Biosci. Eng., 11 (2014), 919-927.
doi: 10.3934/mbe.2014.11.919. |
[9] |
X. Lai, Sh. Liu and R. Lin, Rich dynamical behaviors for predator-prey model with weak Allee effect, Applicable Analysis, 89 (2010), 1271-1292.
doi: 10.1080/00036811.2010.483557. |
[10] |
M. P. Mortell, R. E. O'Malley, A. Pokrovskii and V. A. Sobolev, Singular Perturbation and Hysteresis, SIAM, Philadelphia, 2005.
doi: 10.1137/1.9780898717860. |
[11] |
N. N. Nefedov and A. G. Nikitin, The Cauchy problem for a singularly perturbed integro-differential Fredholm equation, Computational Mathematics and Mathematical Physics, 47 (2007), 629-637.
doi: 10.1134/S0965542507040082. |
[12] |
M. A. Nowak and R. M. May, Virus dynamics: Mathematical principles of Immunology and Virology, Oxford University Press, New York, 2000. |
[13] |
A. Sasaki, Evolution of antigenic drift/switching: Continuously evading pathogens, J. Theor. Biol., 168 (1994), 291-308.
doi: 10.1006/jtbi.1994.1110. |
[14] |
A. Sasaki and Y. Haraguchi, Antigenic drift of viruses within a host: A finite site model with demographic stochasticity, J. Mol. Evol, 51 (2000), 245-255. |
[15] |
M. A. Stafford, L. Corey, Y. Cao, E. S. Daar, D. D. Ho and A. S. Perlson, Modeling plasma virus concentration during primary HIV infection, J. Theor. Biol., 203 (2000), 285-301.
doi: 10.1006/jtbi.2000.1076. |
[16] |
L. S. Tsimring, H. Levine and D. A. Kessler, RNA virus evolution via a fitness-space model, Phys. Rev. Lett., 76 (1996), 4440-4443.
doi: 10.1103/PhysRevLett.76.4440. |
[17] |
C. Vargas-De-León and A. Korobeinikov, Global stability of a population dynamics model with inhibition and negative feedback, Math. Med. Biol., 30 (2013), 65-72.
doi: 10.1093/imammb/dqr027. |
[18] |
A. B. Vasilieva, V. F. Butuzov and L. V. Kalachev, The Boundary Function Method for Singular Perturbation Problems, SIAM, Philadelphia, 1995.
doi: 10.1137/1.9781611970784. |
[19] |
D. Wodarz, J. P. Christensen and A. R. Thomsen, The importance of lytic and nonlytic immune responses in viral infections, TRENDS in Immunology, 23 (2002), 194-200.
doi: 10.1016/S1471-4906(02)02189-0. |
[1] |
Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2935-2950. doi: 10.3934/dcdsb.2018112 |
[2] |
Aiping Wang, Michael Y. Li. Viral dynamics of HIV-1 with CTL immune response. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2257-2272. doi: 10.3934/dcdsb.2020212 |
[3] |
Hong Yang, Junjie Wei. Dynamics of spatially heterogeneous viral model with time delay. Communications on Pure and Applied Analysis, 2020, 19 (1) : 85-102. doi: 10.3934/cpaa.2020005 |
[4] |
Andrei Korobeinikov, Conor Dempsey. A continuous phenotype space model of RNA virus evolution within a host. Mathematical Biosciences & Engineering, 2014, 11 (4) : 919-927. doi: 10.3934/mbe.2014.11.919 |
[5] |
Liang Zhao, Jianhe Shen. Canards and homoclinic orbits in a slow-fast modified May-Holling-Tanner predator-prey model with weak multiple Allee effect. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022018 |
[6] |
Chunhua Shan. Slow-fast dynamics and nonlinear oscillations in transmission of mosquito-borne diseases. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1447-1469. doi: 10.3934/dcdsb.2021097 |
[7] |
Claude-Michel Brauner, Danaelle Jolly, Luca Lorenzi, Rodolphe Thiebaut. Heterogeneous viral environment in a HIV spatial model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 545-572. doi: 10.3934/dcdsb.2011.15.545 |
[8] |
Wei Wang, Wanbiao Ma, Xiulan Lai. Sufficient conditions for global dynamics of a viral infection model with nonlinear diffusion. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3989-4011. doi: 10.3934/dcdsb.2020271 |
[9] |
Stephen Pankavich, Christian Parkinson. Mathematical analysis of an in-host model of viral dynamics with spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1237-1257. doi: 10.3934/dcdsb.2016.21.1237 |
[10] |
J. M. Cushing, Simon Maccracken Stump. Darwinian dynamics of a juvenile-adult model. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1017-1044. doi: 10.3934/mbe.2013.10.1017 |
[11] |
Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021 |
[12] |
Qi Deng, Zhipeng Qiu, Ting Guo, Libin Rong. Modeling within-host viral dynamics: The role of CTL immune responses in the evolution of drug resistance. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3543-3562. doi: 10.3934/dcdsb.2020245 |
[13] |
Ichrak Bouacida, Mourad Kerboua, Sami Segni. Controllability results for Sobolev type $ \psi - $Hilfer fractional backward perturbed integro-differential equations in Hilbert space. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022028 |
[14] |
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595 |
[15] |
Nara Bobko, Jorge P. Zubelli. A singularly perturbed HIV model with treatment and antigenic variation. Mathematical Biosciences & Engineering, 2015, 12 (1) : 1-21. doi: 10.3934/mbe.2015.12.1 |
[16] |
Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057 |
[17] |
Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166 |
[18] |
Stephen Pankavich, Deborah Shutt. An in-host model of HIV incorporating latent infection and viral mutation. Conference Publications, 2015, 2015 (special) : 913-922. doi: 10.3934/proc.2015.0913 |
[19] |
Shingo Iwami, Shinji Nakaoka, Yasuhiro Takeuchi. Mathematical analysis of a HIV model with frequency dependence and viral diversity. Mathematical Biosciences & Engineering, 2008, 5 (3) : 457-476. doi: 10.3934/mbe.2008.5.457 |
[20] |
Jinliang Wang, Jiying Lang, Xianning Liu. Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3215-3233. doi: 10.3934/dcdsb.2015.20.3215 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]