\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy

Abstract Related Papers Cited by
  • In this paper, we analyze a general predator-prey model with state feedback impulsive harvesting strategies in which the prey species displays a strong Allee effect. We firstly show the existence of order-$1$ heteroclinic cycle and order-$1$ positive periodic solutions by using the geometric theory of differential equations for the unperturbed system. Based on the theory of rotated vector fields, the order-$1$ positive periodic solutions and heteroclinic bifurcation are studied for the perturbed system. Finally, some numerical simulations are provided to illustrate our main results. All the results indicate that the harvesting rate should be maintained at a reasonable range to keep the sustainable development of ecological systems.
    Mathematics Subject Classification: Primary: 34A37, 34C23, 34C37, 34D10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    W. C. Allee, Animal Aggregations: A Study in General Sociology, University of Chicago Press, Chicago, 1931.

    [2]

    L. S. Chen, Pest control and geometric theory of semicontinuous dynamical system, Journal of Beihua University (Natural Science), 12 (2011), 1-9. (in Chinese)doi: 10.3969/j.issn.1009-4822.2011.01.001.

    [3]

    L. L. Chen and Z. S. Lin, The effect of habitat destruction on metapopulations with the Allee-like effect: A study case of yancheng in Jiangsu province, China, Ecol. Model., 213 (2008), 356-364.doi: 10.1016/j.ecolmodel.2007.12.016.

    [4]

    F. Courchamp, B. Grenfell and T. Clutton-Brock, Population dynamics of obligate cooperators, Proc. R. Soc. Lond. B., 266 (1999), 557-563.doi: 10.1098/rspb.1999.0672.

    [5]

    M. G. Correigh, Habitat selection reduces extinction of populations subject to Allee effects, Theor. Popul. Biol., 64 (2003), 1-10.doi: 10.1016/S0040-5809(03)00025-X.

    [6]

    C. J. Dai, M. Zhao and L. S. Chen, Homoclinic bifurcation in semi-continuous dynamic systems, Int. J. Biomath., 5 (2012), 1250059, 19pp.doi: 10.1142/S1793524512500593.

    [7]

    H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Hifr Co, Edmonton, 1980.doi: 10.2307/3556198.

    [8]

    M. J. Groom, Allee effects limit population viability of an annual plant, Amer. Naturalist, 151 (1998), 487-496.doi: 10.1086/286135.

    [9]

    H. J. Guo, L. S. Chen and X. Y. Song, Geometric properties of solution of a cylindrical dynamic system with impulsive state feedback control, Nonlinear Anal. Hybrid Syst., 15 (2015), 98-111.doi: 10.1016/j.nahs.2014.08.002.

    [10]

    M. Z. Huang, J. X. Li, X. Y. Song and H. J. Guo, Modeling impulsive injections of insulin: Towards artificial pancreas, SIAM J. Appl. Math., 72 (2012), 1524-1548.doi: 10.1137/110860306.

    [11]

    M. Z. Huang, S. Z. Liu, X. Y. Song and L. S. Chen, Periodic solutions and homoclinic bifurcation of a predator-prey system with two types of harvesting, Nonlinear Dynam., 73 (2013), 815-826.doi: 10.1007/s11071-013-0834-7.

    [12]

    M. Z. Huang and X. Y. Song, Modeling and qualitative analysis of diabetes therapies with state feedback control, Int. J. Biomath., 7 (2014), 1450035, 21pp.doi: 10.1142/S1793524514500351.

    [13]

    M. Kuussaari, I. Saccheri, M. Camara and I. Hanski, Allee effect and population dynamics in the Glanville fritillary butterfly, Oikos, 82 (1998), 384-392, http://www.jstor.org/stable/3546980.doi: 10.2307/3546980.

    [14]

    Z. S. Lin and B. L. Li, The maximum sustainable yield of Allee dynamic system, Ecol. Model., 154 (2002), 1-7.doi: 10.1016/S0304-3800(01)00479-3.

    [15]

    G. P. Pang, L. S. Chen, W. J. Xu and G. Fu, A stage structure pest management model with impulsive state feedback control, Commun. Nonlinear Sci. Numer. Simulat., 23 (2015), 78-88.doi: 10.1016/j.cnsns.2014.10.033.

    [16]

    Y. Tian, A. Kasperski, K. B. Sun and L. S. Chen, Theoretical approach to modelling and analysis of the bioprocess with product inhibition and impulse effect, Biosystems, 104 (2011), 77-86.doi: 10.1016/j.biosystems.2011.01.003.

    [17]

    T. Y. Wang and L. S. Chen, Nonlinear analysis of a microbial pesticide model with impulsive state feedback control, Nonlinear Dynam., 65 (2011), 1-10.doi: 10.1007/s11071-010-9828-x.

    [18]

    J. F. Wang, J. P. Shi and J. J. Wei, Predator-prey system with strong Allee effect in prey, J. Math. Biol., 62 (2011), 291-331.doi: 10.1007/s00285-010-0332-1.

    [19]

    C. J. Wei and L. S. Chen, Heteroclinic bifurcation of a prey-predator fishery model with impulsive harvesting, Int. J. Biomath., 6 (2013), 1350031, 15pp.doi: 10.1142/S1793524513500319.

    [20]

    C. J. Wei and L. S. Chen, Homoclinic bifurcation of prey-predator model with impulsive state feedback control, Appl. Math. Comput., 237 (2014), 282-292.doi: 10.1016/j.amc.2014.03.124.

    [21]

    C. J. Wei and L. S. Chen, Periodic solution and heteroclinic bifurcation in a predator-prey system with Allee effect and impulsive harvesting, Nonlinear Dynam., 76 (2014), 1109-1117.doi: 10.1007/s11071-013-1194-z.

    [22]

    Y. Q. Ye, Limit Cycle Theory, Shanghai Science and Technology Press, Shanghai, 1984. (in Chinese)

    [23]

    L. C. Zhao, L. S. Chen and Q. L. Zhang, The geometrical analysis of a predator-prey model with two state impulses, Math. Biosci., 238 (2012), 55-64.doi: 10.1016/j.mbs.2012.03.011.

    [24]

    S. R. Zhou, Y. F. Liu and G. Wang, The stability of predator-prey systems subject to the Allee effects, Theor. Popul. Biol., 67 (2005), 23-31.doi: 10.1016/j.tpb.2004.06.007.

    [25]

    S. R. Zhou and G. Wang, Allee-like effects in metapopulation dynamics, Math. Biosci., 189 (2004), 103-113.doi: 10.1016/j.mbs.2003.06.001.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(76) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return