Citation: |
[1] |
K. L. Cooke, Stability analysis for a vector disease model, Rocky Mount. J. Math., 9 (1979), 31-42.doi: 10.1216/RMJ-1979-9-1-31. |
[2] |
E. Beretta and Y. Takeuchi, Global stability of an SIR epidemic model with time delays, J. Math. Biol., 33 (1995), 250-260.doi: 10.1007/BF00169563. |
[3] |
H. Y. Shu, D. J. Fan and J. J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, Nonlinear Anal.: Real World Appl., 13 (2012), 1581-1592.doi: 10.1016/j.nonrwa.2011.11.016. |
[4] |
A. Lajmanovich and J. A. York, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28 (1976), 221-236.doi: 10.1016/0025-5564(76)90125-5. |
[5] |
D. Q. Ding and X. H. Ding, Global stability of multi-group vaccination epidemic models with delays, Nonlinear Anal.: Real World Appl., 12 (2011), 1991-1997.doi: 10.1016/j.nonrwa.2010.12.015. |
[6] |
R. Y. Sun and J. P. Shi, Global stability of multigroup epidemic model with group mixing and nonlinear incidence rates, Appl. Math. Comput., 218 (2011), 280-286.doi: 10.1016/j.amc.2011.05.056. |
[7] |
H. Chen and J. T. Sun, Global stability of delay multigroup epidemic models with group mixing and nonlinear incidence rates, Appl. Math. Comput., 218 (2011), 4391-4400.doi: 10.1016/j.amc.2011.10.015. |
[8] |
T. Kuniya, Global stability of a multi-group SVIR epidemic model, Nonlinear Anal.: Real World Appl., 14 (2013), 1135-1143.doi: 10.1016/j.nonrwa.2012.09.004. |
[9] |
H. Guo, M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Canad. Appl. Math. Quart., 14 (2006), 259-284. |
[10] |
H. Guo, M. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions, Proc. Amer. Math. Soc., 136 (2008), 2793-2802.doi: 10.1090/S0002-9939-08-09341-6. |
[11] |
M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Differential Equations, 248 (2010), 1-20.doi: 10.1016/j.jde.2009.09.003. |
[12] |
Z. Shuai and P. van den Driessche, Impact of heterogeneity on the dynamics of an SEIR epidemic model, Math. Biosci. Eng., 9 (2012), 393-411.doi: 10.3934/mbe.2012.9.393. |
[13] |
J. Q. Li, Y. L. Yang and Y. C. Zhou, Global stability of an epidemic model with latent stage and vaccination, Nonlinear Anal.: Real World Appl., 12 (2011), 2163-2173.doi: 10.1016/j.nonrwa.2010.12.030. |
[14] |
S. M. Blower and A. R. McLean., Prophylactic vaccines, risk behavior change, and the probability of eradicating HIV in San Francisco, Science, 265 (1994), 1451-1454.doi: 10.1126/science.8073289. |
[15] |
Y. Xiao and S. Tang, Dynamics of infection with nonlinear incidence in a simple vaccination model, Nonlinear Anal.: Real World Appl., 11 (2010), 4154-4163.doi: 10.1016/j.nonrwa.2010.05.002. |
[16] |
X. Y. Song, Y. Jiang and H. M. Wei, Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays, Appl. Math. Comput., 214 (2009), 381-390.doi: 10.1016/j.amc.2009.04.005. |
[17] |
G. P. Sahu and J. Dhar, Analysis of an SVEIS epidemic model with partial temporary immunity and saturation incidence rate, Appl. Math. Model., 36 (2012), 908-923.doi: 10.1016/j.apm.2011.07.044. |
[18] |
M. Iannelli, M. Martcheva and X. Z. Li, Strain replacement in an epidemic model with super-infection and perfect vaccination, Math. Biosci., 195 (2005), 23-46.doi: 10.1016/j.mbs.2005.01.004. |
[19] |
X. Z. Li, J. Wang and M. Ghosh, Stability and bifurcation of an SIVS epidemic model with treatment and age of vaccination, Appl. Math. Model., 34 (2010), 437-450.doi: 10.1016/j.apm.2009.06.002. |
[20] |
X. C. Duan, S. L. Yuan and X. Z. Li, Global stability of an SVIR model with age of vaccination, Appl. Math. Comput., 226 (2014), 528-540.doi: 10.1016/j.amc.2013.10.073. |
[21] |
F. Hoppensteadt, An age-dependent epidemic model, J. Franklin Inst., 297 (1974), 325-333.doi: 10.1016/0016-0032(74)90037-4. |
[22] |
F. Hoppensteadt, Mathematical Theories of Populations: Demographics, Genetics and Epiemics, Philadelphia: Society for industrial and applied mathematics, 1975. |
[23] |
R. K. Miller, Nolinear Volterra Integral Equations, W. A. Benjamin, New York, 1971. |
[24] |
F. V. Atkinson and J. R. Haddock, On determining phase spaces for functional differential equations, Funkcial. Ekvac., 31 (1988), 331-347. |
[25] |
J. Hale and S. Verduyn Lunel, Introduction to Functional Differential Equations, in: Applied Mathematical Sciences, Springer-Verlag, New York, 1993.doi: 10.1007/978-1-4612-4342-7. |
[26] |
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.doi: 10.1007/BF00178324. |
[27] |
J. R. Haddock and J. Terjeki, Liapunov-Razumikhin functions and an invariance principle for functional-differential equations, J. Differential Equations, 48 (1983), 95-122.doi: 10.1016/0022-0396(83)90061-X. |
[28] |
J. R. Haddock, T. Krisztin and J. Terjeki, Invariance principles for autonomous functional-differential equations, J. Integral Equations, 10 (1985), 123-136. |
[29] |
S. Spencer, Stochastic Epidemic Models for Emerging Diseases, Ph.D. thesis, University of Nottingham, 2008. |
[30] |
J. R. Beddington and R. M. May, Harvesting natural populations in a randomly fluctuating environment, Science, 197 (1977), 463-465.doi: 10.1126/science.197.4302.463. |
[31] |
X. R. Mao, G. Marion and E. Renshaw, Environmental noise suppresses explosion in population dynamics, Stoch Process Appl., 97 (2002), 95-110.doi: 10.1016/S0304-4149(01)00126-0. |
[32] |
N. Dalal, D. Greenhalgh and X. R. Mao, A stochastic model for internal HIV dynamics, J Math Anal Appl., 341 (2008), 1084-1101.doi: 10.1016/j.jmaa.2007.11.005. |
[33] |
C. Ji, D. Jiang and N. Shi, Multigroup SIR epidemic model with stochastic perturbation, Phys A: Stat Mech Appl., 390 (2011), 1747-1762.doi: 10.1016/j.physa.2010.12.042. |
[34] |
P. S. Mandal, S. Abbas and M. Banerjee, A comparative study of deterministic and stochastic dynamics for a non-autonomous allelopathic phytoplankton model, Appl. Math. Comput., 238 (2014), 300-318.doi: 10.1016/j.amc.2014.04.009. |
[35] |
M. Liu, C. Bai and K. Wang, Asymptotic stability of a two-group stochastic SEIR model with infinite delays, Commun Nonlinear Sci Numer Simulat., 19 (2014), 3444-3453.doi: 10.1016/j.cnsns.2014.02.025. |
[36] |
Q. S. Yang and X. R. Mao, Stochastic dynamic of SIRS epidemic models with random perturbation, Math. Biosci. Eng., 11 (2014), 1003-1025.doi: 10.3934/mbe.2014.11.1003. |
[37] |
X. R. Mao, Stochastic Differential Equations and Their Applications, Chichester: Horwood publishing, 1997. |
[38] |
D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525-546.doi: 10.1137/S0036144500378302. |