-
Previous Article
Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections
- MBE Home
- This Issue
-
Next Article
The role of the cytokines IL-27 and IL-35 in cancer
An integrated cellular and sub-cellular model of cancer chemotherapy and therapies that target cell survival
1. | Department of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02906, United States |
2. | Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States, United States |
3. | Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109-1043, United States |
References:
[1] |
J. M. Adams and S. Cory, The Bcl-2 protein family: Arbiters of cell survival, Science, 281 (1998), 1322-1326.
doi: 10.1126/science.281.5381.1322. |
[2] |
L. Bai, J. Chen, D. McEachern, L. Liu and H. Zhou et al., BM-1197: A novel and specific bcl-2/bcl-xl inhibitor inducing complete and long-lasting tumor regression in vivo, PLoS One, 9 (2014), e99404.
doi: 10.1371/journal.pone.0099404. |
[3] |
A. Basu and S. Krishnamurthy, BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes, Nature, 415 (2002), 922-926. |
[4] |
P. bouillet, J. F. Purton, D. I. Godfrey et al., BH3-only proteins and their roles in programmed cell death, Oncogene, 27 (2009), S128-S136. |
[5] |
D. T. Chao and S. J. Korsmeyer, Bcl-2 family: Regulators of cell death, Annu. Rev. Immunol., 16 (1998), 395-419.
doi: 10.1146/annurev.immunol.16.1.395. |
[6] |
G. Chu, Cellular responses to cisplatin: The roles of dna-binding proteins an DNA repair, J. Biol. Chem., 269 (1994), 787-790. |
[7] |
A. W. El-Kareh and T. W. Secomb, A mathematical model for cisplatin cellular pharmacodynamics, Neoplasia, 5 (2003), 161-169.
doi: 10.1016/S1476-5586(03)80008-8. |
[8] |
A. Florea and D. Busselberg, Cisplatin As An Anti-Tumor Drug: Cellular mechanisms of activity, drug resistance and induced side effects, Cancers, 3 (2011), 1351-1371.
doi: 10.3390/cancers3011351. |
[9] |
K. V. Floros, H. Thomadaki, G. Lallas, N. Katsaros, M. Talieri and A. Scorilas, Cisplatin-induced apoptosis in HL-60 human promyelocytic leukemia cells: differential expression of BCL2 and novel apoptosis-related gene BCL2L12, Ann NY Acad Sci, 1010 (2003), 153-158.
doi: 10.1196/annals.1299.025. |
[10] |
V. M. Gonzalez, M. A. Fuertes, C. Alonso and J. M. Perez, Is Cisplatin-Induced Cell Death Always Produced by Apoptosis?, Mol. Pharmacol., 59 (2001), 657-663. |
[11] |
H. V. Jain, A. Richardson, M. Meyer-Hermann and H. M. Byrne, Exploiting the synergy between carboplatin and ABT-737 in the treatment of ovarian carcinomas, PLoS One, 9 (2014), e81582.
doi: 10.1371/journal.pone.0081582. |
[12] |
H. V. Jain and M. Meyer-Hermann, The molecular basis of synergism between carboplatin and ABT-737 therapy targeting ovarian carcinomas, Cancer Res., 71 (2011), 705-715.
doi: 10.1158/0008-5472.CAN-10-3174. |
[13] |
H. V. Jain, J. E. Nor and T. L. Jackson, Quantification of endothelial cell-targeted anti-Bcl-2 therapy and its suppression of tumor growth and vascularization, Mol. Cancer There., 8 (2009), 2926-2936.
doi: 10.1158/1535-7163.MCT-08-1223. |
[14] |
H. V. Jain, J. E. Nor and T. L. Jackson, Modeling the VEGF-Bcl-2-CXCL8 pathway in intratumoral agiogenesis, Bull. Math. Biol., 70 (2008), 89-117.
doi: 10.1007/s11538-007-9242-9. |
[15] |
Z. Jiang, X. Zheng and K. M. Rich, Down-regulation of Bcl-2 and Bcl-xL expression with bispecific antisense treatment in glioblastoma cell lines induce cell death, J Neurochem, 84 (2003), 273-281.
doi: 10.1046/j.1471-4159.2003.01522.x. |
[16] |
Y. Jung and S. J. Lippard, Direct Cellular Responses to Platinum-Induced DNA Damage, Chem. Rev., 107 (2007), 1387-1407. |
[17] |
A. Kothandapani, V. S. Dangeti and A. R. Brown, et al., Novel role of base excision repair (BER) in mediating cisplatin cytotoxicity, J. Biol. Chem., 286 (2011), 14564-14574. |
[18] |
Q. T. Le and A. J. Giaccia, Therapeutic exploitation of the physiological and molecular genetic alterations in head and neck cancer, Clin. Cancer Res., 9 (2003), 4287-4295. |
[19] |
J. Y. Li, Y. Y. Li, W. Jin, Q. Yang, Z. M. Shao and X. S. Tian, ABT-737 reverses the acquired radioresistance of breast cancer cells by targeting Bcl-2 and Bcl-xL, J. Exp Clin. Cancer Res., 31 (2012), p102.
doi: 10.1186/1756-9966-31-102. |
[20] |
T. Lindsten, A. J. Ross and A. King et al., The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues, Mol. Cell., 6 (2000), 1389-1399.
doi: 10.1016/S1097-2765(00)00136-2. |
[21] |
S. R. McWhinney, R. M. Goldberg and H. L. McLeod, Platinum neurotoxicity pharmacogenetics, Mol. Cancer Ther., 8 (2009), 10-16.
doi: 10.1158/1535-7163.MCT-08-0840. |
[22] |
D. Mitra, S. P. Malkoski and X. Wang, Cancer stem cells in head and neck cancer, Cancers, 3 (2011), 415-427.
doi: 10.3390/cancers3010415. |
[23] |
M. J. Mokhtari, A. Akbarzadeh and M. Hashemi et al., Cisplatin induces down regulation of BCL2 in T47D breast cancer cell line, Adv Studies in Biol, 4 (2012), 19-25. |
[24] |
S. Mueller, M. Schittenhelm and F. Honecker, et al., Cell-cycle progression and response of germ cell tumors to cisplatin in vitro, Int. J. Oncol., 29 (2006), 471-479.
doi: 10.3892/ijo.29.2.471. |
[25] |
D. W. Nicholson, From bench to clinic with apoptosis-based therapeutic agents, Nature, 407 (2000), 810-816. |
[26] |
D. Park, A. T. Magis and R. Li et al., Novel small-molecule inhibitors of Bcl-XL to treat lung cancer, Cancer Res., 73 (2013), 5485-5496.
doi: 10.1158/0008-5472.CAN-12-2272. |
[27] |
D. Pulte and H. Brennera, Changes in survival in head and neck cancers in the late 20th and early 21st century: A period analysis, Oncologist, 15 (2010), 994-1001.
doi: 10.1634/theoncologist.2009-0289. |
[28] |
J. C. Reed, Apoptosis-based therapies, Nat. Rev. Drug Discov., 1 (2002), 111-121.
doi: 10.1038/nrd726. |
[29] |
J. C. Reed, Bcl-2 family proteins: Strategies for overcoming chemoresistance in cancer, Adv. in Pharm., 41 (1997), 501-532.
doi: 10.1016/S1054-3589(08)61070-4. |
[30] |
A. W. Roberts, J. F. Seymour and J. R. Brown et al., Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: Results of a phase I study of navitoclax in patients with relapsed or refractory disease, J. Clin. Oncol., 30 (2012), 488-496.
doi: 10.1200/JCO.2011.34.7898. |
[31] |
S. Y. Sharp, P. M. Rogers and L. R. Kelland, Transport of cisplatin and bis-acetato-ammine-dichlorocyclohexylamine Platinum(IV) (JM216) in human ovarian carcinoma cell lines: identification of a plasma membrane protein associated with cisplatin resistance, Clin. Cancer Res., 1 (1995), 981-989. |
[32] |
C. M. Sorenson, M. A. Barry and A. Eastman, Analysis of events associated with cell cycle arrest at G2 phase and cell death induced by cisplatin, JNCI., 82 (1990), 749-755.
doi: 10.1093/jnci/82.9.749. |
[33] |
J. Smith, L. M. Tho, N. Xu and D. A. Gillespie, The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer, Adv. Cancer Res., 108 (2010), 73-112.
doi: 10.1016/B978-0-12-380888-2.00003-0. |
[34] |
G. C. Shore and J. Viallet, Modeling the bcl-2 family of apoptosis suppressors for potential herapeutic benefit in cancer, Hemotol., 1 (2005), 226-230. |
[35] |
V. Sresht, J. R. Bellare and S. K. Gupta, Modeling the cytotoxicity of cisplatin, Ind. Eng. Chem. Res., 50 (2011), 12872-12880.
doi: 10.1021/ie102360e. |
[36] |
K. A. Tacka, D. Szalda, A. K. Souid, J. Goodisman and J. C. Dabrowiak, Experimental and theoretical studies on the pharmacodynamics of cisplatin in jurkat cells, Chem. Res. Toxicol., 17 (2004), 1434-1444.
doi: 10.1021/tx0498760. |
[37] |
V. Troger, J. L. Fischel and P. Formento et al., Effects of prolonged exposure to cisplatin on cytotoxicity and intracellular drug concentration, Eur. J. Cancer, 28 (1992), 82-86. |
[38] |
C. Tse, A. R. Shoemaker and J. Adickes et al., ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor, Cancer Res., 68 (2008), 3421-3428.
doi: 10.1158/0008-5472.CAN-07-5836. |
[39] |
M. C. Wei, W. X. Zong and E. H. Cheng et al., Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death, Scient, 292 (2001), 727-730.
doi: 10.1126/science.1059108. |
show all references
References:
[1] |
J. M. Adams and S. Cory, The Bcl-2 protein family: Arbiters of cell survival, Science, 281 (1998), 1322-1326.
doi: 10.1126/science.281.5381.1322. |
[2] |
L. Bai, J. Chen, D. McEachern, L. Liu and H. Zhou et al., BM-1197: A novel and specific bcl-2/bcl-xl inhibitor inducing complete and long-lasting tumor regression in vivo, PLoS One, 9 (2014), e99404.
doi: 10.1371/journal.pone.0099404. |
[3] |
A. Basu and S. Krishnamurthy, BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes, Nature, 415 (2002), 922-926. |
[4] |
P. bouillet, J. F. Purton, D. I. Godfrey et al., BH3-only proteins and their roles in programmed cell death, Oncogene, 27 (2009), S128-S136. |
[5] |
D. T. Chao and S. J. Korsmeyer, Bcl-2 family: Regulators of cell death, Annu. Rev. Immunol., 16 (1998), 395-419.
doi: 10.1146/annurev.immunol.16.1.395. |
[6] |
G. Chu, Cellular responses to cisplatin: The roles of dna-binding proteins an DNA repair, J. Biol. Chem., 269 (1994), 787-790. |
[7] |
A. W. El-Kareh and T. W. Secomb, A mathematical model for cisplatin cellular pharmacodynamics, Neoplasia, 5 (2003), 161-169.
doi: 10.1016/S1476-5586(03)80008-8. |
[8] |
A. Florea and D. Busselberg, Cisplatin As An Anti-Tumor Drug: Cellular mechanisms of activity, drug resistance and induced side effects, Cancers, 3 (2011), 1351-1371.
doi: 10.3390/cancers3011351. |
[9] |
K. V. Floros, H. Thomadaki, G. Lallas, N. Katsaros, M. Talieri and A. Scorilas, Cisplatin-induced apoptosis in HL-60 human promyelocytic leukemia cells: differential expression of BCL2 and novel apoptosis-related gene BCL2L12, Ann NY Acad Sci, 1010 (2003), 153-158.
doi: 10.1196/annals.1299.025. |
[10] |
V. M. Gonzalez, M. A. Fuertes, C. Alonso and J. M. Perez, Is Cisplatin-Induced Cell Death Always Produced by Apoptosis?, Mol. Pharmacol., 59 (2001), 657-663. |
[11] |
H. V. Jain, A. Richardson, M. Meyer-Hermann and H. M. Byrne, Exploiting the synergy between carboplatin and ABT-737 in the treatment of ovarian carcinomas, PLoS One, 9 (2014), e81582.
doi: 10.1371/journal.pone.0081582. |
[12] |
H. V. Jain and M. Meyer-Hermann, The molecular basis of synergism between carboplatin and ABT-737 therapy targeting ovarian carcinomas, Cancer Res., 71 (2011), 705-715.
doi: 10.1158/0008-5472.CAN-10-3174. |
[13] |
H. V. Jain, J. E. Nor and T. L. Jackson, Quantification of endothelial cell-targeted anti-Bcl-2 therapy and its suppression of tumor growth and vascularization, Mol. Cancer There., 8 (2009), 2926-2936.
doi: 10.1158/1535-7163.MCT-08-1223. |
[14] |
H. V. Jain, J. E. Nor and T. L. Jackson, Modeling the VEGF-Bcl-2-CXCL8 pathway in intratumoral agiogenesis, Bull. Math. Biol., 70 (2008), 89-117.
doi: 10.1007/s11538-007-9242-9. |
[15] |
Z. Jiang, X. Zheng and K. M. Rich, Down-regulation of Bcl-2 and Bcl-xL expression with bispecific antisense treatment in glioblastoma cell lines induce cell death, J Neurochem, 84 (2003), 273-281.
doi: 10.1046/j.1471-4159.2003.01522.x. |
[16] |
Y. Jung and S. J. Lippard, Direct Cellular Responses to Platinum-Induced DNA Damage, Chem. Rev., 107 (2007), 1387-1407. |
[17] |
A. Kothandapani, V. S. Dangeti and A. R. Brown, et al., Novel role of base excision repair (BER) in mediating cisplatin cytotoxicity, J. Biol. Chem., 286 (2011), 14564-14574. |
[18] |
Q. T. Le and A. J. Giaccia, Therapeutic exploitation of the physiological and molecular genetic alterations in head and neck cancer, Clin. Cancer Res., 9 (2003), 4287-4295. |
[19] |
J. Y. Li, Y. Y. Li, W. Jin, Q. Yang, Z. M. Shao and X. S. Tian, ABT-737 reverses the acquired radioresistance of breast cancer cells by targeting Bcl-2 and Bcl-xL, J. Exp Clin. Cancer Res., 31 (2012), p102.
doi: 10.1186/1756-9966-31-102. |
[20] |
T. Lindsten, A. J. Ross and A. King et al., The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues, Mol. Cell., 6 (2000), 1389-1399.
doi: 10.1016/S1097-2765(00)00136-2. |
[21] |
S. R. McWhinney, R. M. Goldberg and H. L. McLeod, Platinum neurotoxicity pharmacogenetics, Mol. Cancer Ther., 8 (2009), 10-16.
doi: 10.1158/1535-7163.MCT-08-0840. |
[22] |
D. Mitra, S. P. Malkoski and X. Wang, Cancer stem cells in head and neck cancer, Cancers, 3 (2011), 415-427.
doi: 10.3390/cancers3010415. |
[23] |
M. J. Mokhtari, A. Akbarzadeh and M. Hashemi et al., Cisplatin induces down regulation of BCL2 in T47D breast cancer cell line, Adv Studies in Biol, 4 (2012), 19-25. |
[24] |
S. Mueller, M. Schittenhelm and F. Honecker, et al., Cell-cycle progression and response of germ cell tumors to cisplatin in vitro, Int. J. Oncol., 29 (2006), 471-479.
doi: 10.3892/ijo.29.2.471. |
[25] |
D. W. Nicholson, From bench to clinic with apoptosis-based therapeutic agents, Nature, 407 (2000), 810-816. |
[26] |
D. Park, A. T. Magis and R. Li et al., Novel small-molecule inhibitors of Bcl-XL to treat lung cancer, Cancer Res., 73 (2013), 5485-5496.
doi: 10.1158/0008-5472.CAN-12-2272. |
[27] |
D. Pulte and H. Brennera, Changes in survival in head and neck cancers in the late 20th and early 21st century: A period analysis, Oncologist, 15 (2010), 994-1001.
doi: 10.1634/theoncologist.2009-0289. |
[28] |
J. C. Reed, Apoptosis-based therapies, Nat. Rev. Drug Discov., 1 (2002), 111-121.
doi: 10.1038/nrd726. |
[29] |
J. C. Reed, Bcl-2 family proteins: Strategies for overcoming chemoresistance in cancer, Adv. in Pharm., 41 (1997), 501-532.
doi: 10.1016/S1054-3589(08)61070-4. |
[30] |
A. W. Roberts, J. F. Seymour and J. R. Brown et al., Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: Results of a phase I study of navitoclax in patients with relapsed or refractory disease, J. Clin. Oncol., 30 (2012), 488-496.
doi: 10.1200/JCO.2011.34.7898. |
[31] |
S. Y. Sharp, P. M. Rogers and L. R. Kelland, Transport of cisplatin and bis-acetato-ammine-dichlorocyclohexylamine Platinum(IV) (JM216) in human ovarian carcinoma cell lines: identification of a plasma membrane protein associated with cisplatin resistance, Clin. Cancer Res., 1 (1995), 981-989. |
[32] |
C. M. Sorenson, M. A. Barry and A. Eastman, Analysis of events associated with cell cycle arrest at G2 phase and cell death induced by cisplatin, JNCI., 82 (1990), 749-755.
doi: 10.1093/jnci/82.9.749. |
[33] |
J. Smith, L. M. Tho, N. Xu and D. A. Gillespie, The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer, Adv. Cancer Res., 108 (2010), 73-112.
doi: 10.1016/B978-0-12-380888-2.00003-0. |
[34] |
G. C. Shore and J. Viallet, Modeling the bcl-2 family of apoptosis suppressors for potential herapeutic benefit in cancer, Hemotol., 1 (2005), 226-230. |
[35] |
V. Sresht, J. R. Bellare and S. K. Gupta, Modeling the cytotoxicity of cisplatin, Ind. Eng. Chem. Res., 50 (2011), 12872-12880.
doi: 10.1021/ie102360e. |
[36] |
K. A. Tacka, D. Szalda, A. K. Souid, J. Goodisman and J. C. Dabrowiak, Experimental and theoretical studies on the pharmacodynamics of cisplatin in jurkat cells, Chem. Res. Toxicol., 17 (2004), 1434-1444.
doi: 10.1021/tx0498760. |
[37] |
V. Troger, J. L. Fischel and P. Formento et al., Effects of prolonged exposure to cisplatin on cytotoxicity and intracellular drug concentration, Eur. J. Cancer, 28 (1992), 82-86. |
[38] |
C. Tse, A. R. Shoemaker and J. Adickes et al., ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor, Cancer Res., 68 (2008), 3421-3428.
doi: 10.1158/0008-5472.CAN-07-5836. |
[39] |
M. C. Wei, W. X. Zong and E. H. Cheng et al., Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death, Scient, 292 (2001), 727-730.
doi: 10.1126/science.1059108. |
[1] |
Ben Sheller, Domenico D'Alessandro. Analysis of a cancer dormancy model and control of immuno-therapy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1037-1053. doi: 10.3934/mbe.2015.12.1037 |
[2] |
Alexander S. Bratus, Svetlana Yu. Kovalenko, Elena Fimmel. On viable therapy strategy for a mathematical spatial cancer model describing the dynamics of malignant and healthy cells. Mathematical Biosciences & Engineering, 2015, 12 (1) : 163-183. doi: 10.3934/mbe.2015.12.163 |
[3] |
Tania Biswas, Elisabetta Rocca. Long time dynamics of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2455-2469. doi: 10.3934/dcdsb.2021140 |
[4] |
Federica Bubba, Benoit Perthame, Daniele Cerroni, Pasquale Ciarletta, Paolo Zunino. A coupled 3D-1D multiscale Keller-Segel model of chemotaxis and its application to cancer invasion. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2053-2086. doi: 10.3934/dcdss.2022044 |
[5] |
Avner Friedman, Xiulan Lai. Free boundary problems associated with cancer treatment by combination therapy. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6825-6842. doi: 10.3934/dcds.2019233 |
[6] |
Avner Friedman, Xiulan Lai. Antagonism and negative side-effects in combination therapy for cancer. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2237-2250. doi: 10.3934/dcdsb.2019093 |
[7] |
Harsh Vardhan Jain, Avner Friedman. Modeling prostate cancer response to continuous versus intermittent androgen ablation therapy. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : 945-967. doi: 10.3934/dcdsb.2013.18.945 |
[8] |
Ariosto Silva, Alexander R. A. Anderson, Robert Gatenby. A multiscale model of the bone marrow and hematopoiesis. Mathematical Biosciences & Engineering, 2011, 8 (2) : 643-658. doi: 10.3934/mbe.2011.8.643 |
[9] |
Eric Cancès, Claude Le Bris. Convergence to equilibrium of a multiscale model for suspensions. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 449-470. doi: 10.3934/dcdsb.2006.6.449 |
[10] |
Marzena Dolbniak, Malgorzata Kardynska, Jaroslaw Smieja. Sensitivity of combined chemo-and antiangiogenic therapy results in different models describing cancer growth. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 145-160. doi: 10.3934/dcdsb.2018009 |
[11] |
Christoph Sadée, Eugene Kashdan. A model of thermotherapy treatment for bladder cancer. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1169-1183. doi: 10.3934/mbe.2016037 |
[12] |
Zhan Chen, Yuting Zou. A multiscale model for heterogeneous tumor spheroid in vitro. Mathematical Biosciences & Engineering, 2018, 15 (2) : 361-392. doi: 10.3934/mbe.2018016 |
[13] |
Xavier Blanc, Claude Le Bris, Frédéric Legoll, Tony Lelièvre. Beyond multiscale and multiphysics: Multimaths for model coupling. Networks and Heterogeneous Media, 2010, 5 (3) : 423-460. doi: 10.3934/nhm.2010.5.423 |
[14] |
Urszula Ledzewicz, Helen Moore. Optimal control applied to a generalized Michaelis-Menten model of CML therapy. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 331-346. doi: 10.3934/dcdsb.2018022 |
[15] |
Rachid Ouifki, Gareth Witten. A model of HIV-1 infection with HAART therapy and intracellular delays. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 229-240. doi: 10.3934/dcdsb.2007.8.229 |
[16] |
Sophia R-J Jang, Hsiu-Chuan Wei. On a mathematical model of tumor-immune system interactions with an oncolytic virus therapy. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3261-3295. doi: 10.3934/dcdsb.2021184 |
[17] |
Urszula Ledzewicz, Heinz Schättler. Controlling a model for bone marrow dynamics in cancer chemotherapy. Mathematical Biosciences & Engineering, 2004, 1 (1) : 95-110. doi: 10.3934/mbe.2004.1.95 |
[18] |
Eugene Kashdan, Svetlana Bunimovich-Mendrazitsky. Multi-scale model of bladder cancer development. Conference Publications, 2011, 2011 (Special) : 803-812. doi: 10.3934/proc.2011.2011.803 |
[19] |
Avner Friedman, Harsh Vardhan Jain. A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 591-608. doi: 10.3934/mbe.2013.10.591 |
[20] |
Carlos Jerez-Hanckes, Irina Pettersson, Volodymyr Rybalko. Derivation of cable equation by multiscale analysis for a model of myelinated axons. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 815-839. doi: 10.3934/dcdsb.2019191 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]