-
Previous Article
Dynamics and control of a mathematical model for metronomic chemotherapy
- MBE Home
- This Issue
-
Next Article
An integrated cellular and sub-cellular model of cancer chemotherapy and therapies that target cell survival
Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections
1. | Department of Mathematics and Computer Science, University of Richmond, Richmond, VA |
2. | Weill Cornell Medical College, New York, NY |
3. | Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 |
4. | Department of Mathematics and Statistics, The College of New Jersey, Ewing, NJ, United States |
5. | School of Mathematics and Statistics, University of Sydney, Sydney, NSW |
References:
[1] |
J. W. Ady, J. Heffner, K. Mojica, C. Johnsen, L. J. Belin, D. Love, C. T. Chen, A. Pugalenthi, E. Klein, N. G. Chen, Y. A. Yu, A. A. Szalay and Y. Fong, Oncolytic immunotherapy using recombinant vaccinia virus GLV-1h68 kills sorafenib-resistant hepatocellular carcinoma efficiently, Surgery, 156 (2014), 263-269.
doi: 10.1016/j.surg.2014.03.031. |
[2] |
T. Alarcón, H. M. Byrne and P. K. Maini, A cellular automaton model for tumour growth in inhomogeneous environment, J. Theor. Biol., 225 (2003), 257-274.
doi: 10.1016/S0022-5193(03)00244-3. |
[3] |
N. Bagheri, M. Shiina, D. A. Lauffenburger and W. M. Korn, A dynamical systems model for combinatorial cancer therapy enhances oncolytic adenovirus efficacy by MEK-inhibition, PLoS Comput. Biol., 7 (2011), e1001085.
doi: 10.1371/journal.pcbi.1001085. |
[4] |
Z. Bajzer, T. Carr, K. Josić, S. J. Russell and D. Dingli, Modeling of cancer virotherapy with recombinant measles viruses, J. Theor. Biol., 252 (2008), 109-122.
doi: 10.1016/j.jtbi.2008.01.016. |
[5] |
M. Biesecker, J. H. Kimn, H. Lu, D. Dingli and Z. Bajzer, Optimization of virotherapy for cancer, Bull. Math. Biol., 72 (2010), 469-489.
doi: 10.1007/s11538-009-9456-0. |
[6] |
D. M. Catron, A. A. Itano, K. A. Pape, D. L. Mueller and M. K. Jenkins, Visualizing the first 50 hr of the primary immune response to a soluble antigen, Immunity, 21 (2004), 341-347.
doi: 10.1016/j.immuni.2004.08.007. |
[7] |
Y. Chen, T. DeWeese, J. Dilley, Y. Zhang, Y. Li, N. Ramesh, J. Lee, R. Pennathur-Das, J. Radzyminski, J. Wypych, D. Brignetti, S. Scott, J. Stephens, D. B. Karpf, D. R. Henderson and D. C. Yu, CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity, Cancer Res., 61 (2001), 5453-5460. |
[8] |
R. J. De Boer, M. Oprea, R. Antia, K. Murali-Krishna, R. Ahmed and A. S. Perelson, Recruitment times, proliferation, and apoptosis rates during the CD8(+) T-cell response to lymphocytic choriomeningitis virus, J. Virol., 75 (2001), 10663-10669. |
[9] |
L. de Pillis, A. Gallegos and A. Radunskaya, A model of dendritic cell therapy for melanoma, Front Oncol, 3 (2013), p56. |
[10] |
L. G. de Pillis, A. E. Radunskaya and C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Res., 67 (2007), p8420.
doi: 10.1158/0008-5472.CAN-07-1403. |
[11] |
M. Del Vecchio, E. Bajetta, S. Canova, M. T. Lotze, A. Wesa, G. Parmiani and A. Anichini, Interleukin-12: Biological properties and clinical application, Clin. Cancer Res., 13 (2007), 4677-4685.
doi: 10.1158/1078-0432.CCR-07-0776. |
[12] |
D. Dingli, C. Offord, R. Myers, K. W. Peng, T. W. Carr, K. Josic, S. J. Russell and Z. Bajzer, Dynamics of multiple myeloma tumor therapy with a recombinant measles virus, Cancer Gene Ther., 16 (2009), 873-882.
doi: 10.1038/cgt.2009.40. |
[13] |
R. M. Eager and J. Nemunaitis, Clinical development directions in oncolytic viral therapy, Cancer Gene Ther., 18 (2011), 305-317.
doi: 10.1038/cgt.2011.7. |
[14] |
R. Eftimie, J. L. Bramson and D. J. Earn, Interactions between the immune system and cancer: A brief review of non-spatial mathematical models, Bull. Math. Biol., 73 (2011), 2-32.
doi: 10.1007/s11538-010-9526-3. |
[15] |
N. B. Elsedawy and S. J. Russell, Oncolytic vaccines, Expert Rev Vaccines, 12 (2013), 1155-1172.
doi: 10.1586/14760584.2013.836912. |
[16] |
A. Friedman, J. P. Tian, G. Fulci, E. A. Chiocca and J. Wang, Glioma virotherapy: Effects of innate immune suppression and increased viral replication capacity, Cancer Res., 66 (2006), 2314-2319.
doi: 10.1158/0008-5472.CAN-05-2661. |
[17] |
I. Ganly, V. Mautner and A. Balmain, Productive replication of human adenoviruses in mouse epidermal cells, J. Virol., 74 (2000), 2895-2899.
doi: 10.1128/JVI.74.6.2895-2899.2000. |
[18] |
J. H. Huang, S. N. Zhang, K. J. Choi, I. K. Choi, J. H. Kim, M. G. Lee, M. Lee, H. Kim and C. O. Yun, Therapeutic and tumor-specific immunity induced by combination of dendritic cells and oncolytic adenovirus expressing IL-12 and 4-1BBL, Mol. Ther., 18 (2010), 264-274.
doi: 10.1038/mt.2009.205. |
[19] |
C. Jogler, D. Hoffmann, D. Theegarten, T. Grunwald, K. Uberla and O. Wildner, Replication properties of human adenovirus in vivo and in cultures of primary cells from different animal species, J. Virol., 80 (2006), 3549-3558.
doi: 10.1128/JVI.80.7.3549-3558.2006. |
[20] |
P. H. Kim, T. I. Kim, J. W. Yockman, S. W. Kim and C. O. Yun, The effect of surface modification of adenovirus with an arginine-grafted bioreducible polymer on transduction efficiency and immunogenicity in cancer gene therapy, Biomaterials, 31 (2010), 1865-1874.
doi: 10.1016/j.biomaterials.2009.11.043. |
[21] |
P. H. Kim, J. H. Sohn, J. W. Choi, Y. Jung, S. W. Kim, S. Haam and C. O. Yun, Active targeting and safety profile of PEG-modified adenovirus conjugated with herceptin, Biomaterials, 32 (2011), 2314-2326.
doi: 10.1016/j.biomaterials.2010.10.031. |
[22] |
P. S. Kim, J. J. Crivelli, I. K. Choi, C. O. Yun and J. R. Wares, Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics, (submitted). |
[23] |
D. Kirn, R. L. Martuza and J. Zwiebel, Replication-selective virotherapy for cancer: Biological principles, risk management and future directions, Nat. Med., 7 (2001), 781-787. |
[24] |
N. L. Komarova and D. Wodarz, ODE models for oncolytic virus dynamics, J. Theor. Biol., 263 (2010), 530-543.
doi: 10.1016/j.jtbi.2010.01.009. |
[25] |
N. Kronik, Y. Kogan, M. Elishmereni, K. Halevi-Tobias, S. Vuk-Pavlović and Z. Agur, Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models, PLoS ONE, 5 (2010), e15482.
doi: 10.1371/journal.pone.0015482. |
[26] |
F. Le Bœuf, C. Batenchuk, M. Vähä-Koskela, S. Breton, D. Roy, C. Lemay, J. Cox, H. Abdelbary, T. Falls, G. Waghray, H. Atkins, D. Stojdl, J. S. Diallo, M. Kærn and J. C. Bell, Model-based rational design of an oncolytic virus with improved therapeutic potential, Nat Commun, 4 (2013), p1974. |
[27] |
F. Le Bœuf, J. S. Diallo, J. A. McCart, S. Thorne, T. Falls, M. Stanford, F. Kanji, R. Auer, C. W. Brown, B. D. Lichty, K. Parato, H. Atkins, D. Kirn and J. C. Bell, Synergistic interaction between oncolytic viruses augments tumor killing, Mol. Ther., 18 (2010), 888-895. |
[28] |
H. L. Li, S. Li, J. Y. Shao, X. B. Lin, Y. Cao, W. Q. Jiang, R. Y. Liu, P. Zhao, X. F. Zhu, M. S. Zeng, Z. Z. Guan and W. Huang, Pharmacokinetic and pharmacodynamic study of intratumoral injection of an adenovirus encoding endostatin in patients with advanced tumors, Gene Ther., 15 (2008), 247-256.
doi: 10.1038/sj.gt.3303038. |
[29] |
D. G. Mallet and L. G. De Pillis, A cellular automata model of tumor-immune system interactions, J. Theor. Biol., 239 (2006), 334-350.
doi: 10.1016/j.jtbi.2005.08.002. |
[30] |
A. Melcher, K. Parato, C. M. Rooney and J. C. Bell, Thunder and lightning: Immunotherapy and oncolytic viruses collide, Mol. Ther., 19 (2011), 1008-1016.
doi: 10.1038/mt.2011.65. |
[31] |
T. S. Miest and R. Cattaneo, New viruses for cancer therapy: Meeting clinical needs, Nat. Rev. Microbiol., 12 (2014), 23-34.
doi: 10.1038/nrmicro3140. |
[32] |
W. Mok, T. Stylianopoulos, Y. Boucher and R. K. Jain, Mathematical modeling of herpes simplex virus distribution in solid tumors: implications for cancer gene therapy, Clin. Cancer Res., 15 (2009), 2352-2360.
doi: 10.1158/1078-0432.CCR-08-2082. |
[33] |
F. Pappalardo, M. Pennisi, A. Ricupito, F. Topputo and M. Bellone, Induction of T-cell memory by a dendritic cell vaccine: A computational model, Bioinformatics, 30 (2014), 1884-1891.
doi: 10.1093/bioinformatics/btu059. |
[34] |
M. Robertson-Tessi, A. El-Kareh and A. Goriely, A mathematical model of tumor-immune interactions, J. Theor. Biol., 294 (2012), 56-73.
doi: 10.1016/j.jtbi.2011.10.027. |
[35] |
D. M. Rommelfanger, C. P. Offord, J. Dev, Z. Bajzer, R. G. Vile and D. Dingli, Dynamics of melanoma tumor therapy with vesicular stomatitis virus: Explaining the variability in outcomes using mathematical modeling, Gene Ther., 19 (2012), 543-549.
doi: 10.1038/gt.2011.132. |
[36] |
S. J. Russell, K. W. Peng and J. C. Bell, Oncolytic virotherapy, Nat. Biotechnol., 30 (2012), 658-670.
doi: 10.1038/nbt.2287. |
[37] |
J. R. Tysome, X. Li, S. Wang, P. Wang, D. Gao, P. Du, D. Chen, R. Gangeswaran, L. S. Chard, M. Yuan, G. Alusi, N. R. Lemoine and Y. Wang, A novel therapeutic regimen to eradicate established solid tumors with an effective induction of tumor-specific immunity, Clin. Cancer Res., 18 (2012), 6679-6689.
doi: 10.1158/1078-0432.CCR-12-0979. |
[38] |
M. J. van Stipdonk, E. E. Lemmens and S. P. Schoenberger, Naïve CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation, Nat Immunol., 2 (2001), 423-429. |
[39] |
H. Veiga-Fernandes, U. Walter, C. Bourgeois, A. McLean and B. Rocha, Response of naïve and memory CD8+ T cells to antigen stimulation in vivo, Nat Immunol., 1 (2000), 47-53. |
[40] |
Y. Wang, H. Wang, C. Y. Li and F. Yuan, Effects of rate, volume, and dose of intratumoral infusion on virus dissemination in local gene delivery, Mol. Cancer Ther., 5 (2006), 362-366.
doi: 10.1158/1535-7163.MCT-05-0266. |
[41] |
D. Wodarz, Viruses as antitumor weapons: defining conditions for tumor remission, Cancer Res., 61 (2001), 3501-3507. |
[42] |
D. Wodarz, Computational modeling approaches to studying the dynamics of oncolytic viruses, Math Biosci Eng, 10 (2013), 939-957.
doi: 10.3934/mbe.2013.10.939. |
[43] |
D. Wodarz and N. Komarova, Towards predictive computational models of oncolytic virus therapy: basis for experimental validation and model selection, PLoS ONE, 4 (2009), e4271.
doi: 10.1371/journal.pone.0004271. |
[44] |
S. Worgall, G. Wolff, E. Falck-Pedersen and R. G. Crystal, Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration, Hum. Gene Ther., 8 (1997), 37-44. |
[45] |
J. T. Wu, D. H. Kirn and L. M. Wein, Analysis of a three-way race between tumor growth, a replication-competent virus and an immune response, Bull. Math. Biol., 66 (2004), 605-625.
doi: 10.1016/j.bulm.2003.08.016. |
[46] |
M. Zeyaullah, M. Patro, I. Ahmad, K. Ibraheem, P. Sultan, M. Nehal and A. Ali, Oncolytic viruses in the treatment of cancer: A review of current strategies, Pathol. Oncol. Res., 18 (2012), 771-781.
doi: 10.1007/s12253-012-9548-2. |
[47] |
W. Zhang, G. Fulci, H. Wakimoto, T. A. Cheema, J. S. Buhrman, D. S. Jeyaretna, A. O. Stemmer Rachamimov, S. D. Rabkin and R. L. Martuza, Combination of oncolytic herpes simplex viruses armed with angiostatin and IL-12 enhances antitumor efficacy in human glioblastoma models, Neoplasia, 15 (2013), 591-599.
doi: 10.1593/neo.13158. |
show all references
References:
[1] |
J. W. Ady, J. Heffner, K. Mojica, C. Johnsen, L. J. Belin, D. Love, C. T. Chen, A. Pugalenthi, E. Klein, N. G. Chen, Y. A. Yu, A. A. Szalay and Y. Fong, Oncolytic immunotherapy using recombinant vaccinia virus GLV-1h68 kills sorafenib-resistant hepatocellular carcinoma efficiently, Surgery, 156 (2014), 263-269.
doi: 10.1016/j.surg.2014.03.031. |
[2] |
T. Alarcón, H. M. Byrne and P. K. Maini, A cellular automaton model for tumour growth in inhomogeneous environment, J. Theor. Biol., 225 (2003), 257-274.
doi: 10.1016/S0022-5193(03)00244-3. |
[3] |
N. Bagheri, M. Shiina, D. A. Lauffenburger and W. M. Korn, A dynamical systems model for combinatorial cancer therapy enhances oncolytic adenovirus efficacy by MEK-inhibition, PLoS Comput. Biol., 7 (2011), e1001085.
doi: 10.1371/journal.pcbi.1001085. |
[4] |
Z. Bajzer, T. Carr, K. Josić, S. J. Russell and D. Dingli, Modeling of cancer virotherapy with recombinant measles viruses, J. Theor. Biol., 252 (2008), 109-122.
doi: 10.1016/j.jtbi.2008.01.016. |
[5] |
M. Biesecker, J. H. Kimn, H. Lu, D. Dingli and Z. Bajzer, Optimization of virotherapy for cancer, Bull. Math. Biol., 72 (2010), 469-489.
doi: 10.1007/s11538-009-9456-0. |
[6] |
D. M. Catron, A. A. Itano, K. A. Pape, D. L. Mueller and M. K. Jenkins, Visualizing the first 50 hr of the primary immune response to a soluble antigen, Immunity, 21 (2004), 341-347.
doi: 10.1016/j.immuni.2004.08.007. |
[7] |
Y. Chen, T. DeWeese, J. Dilley, Y. Zhang, Y. Li, N. Ramesh, J. Lee, R. Pennathur-Das, J. Radzyminski, J. Wypych, D. Brignetti, S. Scott, J. Stephens, D. B. Karpf, D. R. Henderson and D. C. Yu, CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity, Cancer Res., 61 (2001), 5453-5460. |
[8] |
R. J. De Boer, M. Oprea, R. Antia, K. Murali-Krishna, R. Ahmed and A. S. Perelson, Recruitment times, proliferation, and apoptosis rates during the CD8(+) T-cell response to lymphocytic choriomeningitis virus, J. Virol., 75 (2001), 10663-10669. |
[9] |
L. de Pillis, A. Gallegos and A. Radunskaya, A model of dendritic cell therapy for melanoma, Front Oncol, 3 (2013), p56. |
[10] |
L. G. de Pillis, A. E. Radunskaya and C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Res., 67 (2007), p8420.
doi: 10.1158/0008-5472.CAN-07-1403. |
[11] |
M. Del Vecchio, E. Bajetta, S. Canova, M. T. Lotze, A. Wesa, G. Parmiani and A. Anichini, Interleukin-12: Biological properties and clinical application, Clin. Cancer Res., 13 (2007), 4677-4685.
doi: 10.1158/1078-0432.CCR-07-0776. |
[12] |
D. Dingli, C. Offord, R. Myers, K. W. Peng, T. W. Carr, K. Josic, S. J. Russell and Z. Bajzer, Dynamics of multiple myeloma tumor therapy with a recombinant measles virus, Cancer Gene Ther., 16 (2009), 873-882.
doi: 10.1038/cgt.2009.40. |
[13] |
R. M. Eager and J. Nemunaitis, Clinical development directions in oncolytic viral therapy, Cancer Gene Ther., 18 (2011), 305-317.
doi: 10.1038/cgt.2011.7. |
[14] |
R. Eftimie, J. L. Bramson and D. J. Earn, Interactions between the immune system and cancer: A brief review of non-spatial mathematical models, Bull. Math. Biol., 73 (2011), 2-32.
doi: 10.1007/s11538-010-9526-3. |
[15] |
N. B. Elsedawy and S. J. Russell, Oncolytic vaccines, Expert Rev Vaccines, 12 (2013), 1155-1172.
doi: 10.1586/14760584.2013.836912. |
[16] |
A. Friedman, J. P. Tian, G. Fulci, E. A. Chiocca and J. Wang, Glioma virotherapy: Effects of innate immune suppression and increased viral replication capacity, Cancer Res., 66 (2006), 2314-2319.
doi: 10.1158/0008-5472.CAN-05-2661. |
[17] |
I. Ganly, V. Mautner and A. Balmain, Productive replication of human adenoviruses in mouse epidermal cells, J. Virol., 74 (2000), 2895-2899.
doi: 10.1128/JVI.74.6.2895-2899.2000. |
[18] |
J. H. Huang, S. N. Zhang, K. J. Choi, I. K. Choi, J. H. Kim, M. G. Lee, M. Lee, H. Kim and C. O. Yun, Therapeutic and tumor-specific immunity induced by combination of dendritic cells and oncolytic adenovirus expressing IL-12 and 4-1BBL, Mol. Ther., 18 (2010), 264-274.
doi: 10.1038/mt.2009.205. |
[19] |
C. Jogler, D. Hoffmann, D. Theegarten, T. Grunwald, K. Uberla and O. Wildner, Replication properties of human adenovirus in vivo and in cultures of primary cells from different animal species, J. Virol., 80 (2006), 3549-3558.
doi: 10.1128/JVI.80.7.3549-3558.2006. |
[20] |
P. H. Kim, T. I. Kim, J. W. Yockman, S. W. Kim and C. O. Yun, The effect of surface modification of adenovirus with an arginine-grafted bioreducible polymer on transduction efficiency and immunogenicity in cancer gene therapy, Biomaterials, 31 (2010), 1865-1874.
doi: 10.1016/j.biomaterials.2009.11.043. |
[21] |
P. H. Kim, J. H. Sohn, J. W. Choi, Y. Jung, S. W. Kim, S. Haam and C. O. Yun, Active targeting and safety profile of PEG-modified adenovirus conjugated with herceptin, Biomaterials, 32 (2011), 2314-2326.
doi: 10.1016/j.biomaterials.2010.10.031. |
[22] |
P. S. Kim, J. J. Crivelli, I. K. Choi, C. O. Yun and J. R. Wares, Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics, (submitted). |
[23] |
D. Kirn, R. L. Martuza and J. Zwiebel, Replication-selective virotherapy for cancer: Biological principles, risk management and future directions, Nat. Med., 7 (2001), 781-787. |
[24] |
N. L. Komarova and D. Wodarz, ODE models for oncolytic virus dynamics, J. Theor. Biol., 263 (2010), 530-543.
doi: 10.1016/j.jtbi.2010.01.009. |
[25] |
N. Kronik, Y. Kogan, M. Elishmereni, K. Halevi-Tobias, S. Vuk-Pavlović and Z. Agur, Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models, PLoS ONE, 5 (2010), e15482.
doi: 10.1371/journal.pone.0015482. |
[26] |
F. Le Bœuf, C. Batenchuk, M. Vähä-Koskela, S. Breton, D. Roy, C. Lemay, J. Cox, H. Abdelbary, T. Falls, G. Waghray, H. Atkins, D. Stojdl, J. S. Diallo, M. Kærn and J. C. Bell, Model-based rational design of an oncolytic virus with improved therapeutic potential, Nat Commun, 4 (2013), p1974. |
[27] |
F. Le Bœuf, J. S. Diallo, J. A. McCart, S. Thorne, T. Falls, M. Stanford, F. Kanji, R. Auer, C. W. Brown, B. D. Lichty, K. Parato, H. Atkins, D. Kirn and J. C. Bell, Synergistic interaction between oncolytic viruses augments tumor killing, Mol. Ther., 18 (2010), 888-895. |
[28] |
H. L. Li, S. Li, J. Y. Shao, X. B. Lin, Y. Cao, W. Q. Jiang, R. Y. Liu, P. Zhao, X. F. Zhu, M. S. Zeng, Z. Z. Guan and W. Huang, Pharmacokinetic and pharmacodynamic study of intratumoral injection of an adenovirus encoding endostatin in patients with advanced tumors, Gene Ther., 15 (2008), 247-256.
doi: 10.1038/sj.gt.3303038. |
[29] |
D. G. Mallet and L. G. De Pillis, A cellular automata model of tumor-immune system interactions, J. Theor. Biol., 239 (2006), 334-350.
doi: 10.1016/j.jtbi.2005.08.002. |
[30] |
A. Melcher, K. Parato, C. M. Rooney and J. C. Bell, Thunder and lightning: Immunotherapy and oncolytic viruses collide, Mol. Ther., 19 (2011), 1008-1016.
doi: 10.1038/mt.2011.65. |
[31] |
T. S. Miest and R. Cattaneo, New viruses for cancer therapy: Meeting clinical needs, Nat. Rev. Microbiol., 12 (2014), 23-34.
doi: 10.1038/nrmicro3140. |
[32] |
W. Mok, T. Stylianopoulos, Y. Boucher and R. K. Jain, Mathematical modeling of herpes simplex virus distribution in solid tumors: implications for cancer gene therapy, Clin. Cancer Res., 15 (2009), 2352-2360.
doi: 10.1158/1078-0432.CCR-08-2082. |
[33] |
F. Pappalardo, M. Pennisi, A. Ricupito, F. Topputo and M. Bellone, Induction of T-cell memory by a dendritic cell vaccine: A computational model, Bioinformatics, 30 (2014), 1884-1891.
doi: 10.1093/bioinformatics/btu059. |
[34] |
M. Robertson-Tessi, A. El-Kareh and A. Goriely, A mathematical model of tumor-immune interactions, J. Theor. Biol., 294 (2012), 56-73.
doi: 10.1016/j.jtbi.2011.10.027. |
[35] |
D. M. Rommelfanger, C. P. Offord, J. Dev, Z. Bajzer, R. G. Vile and D. Dingli, Dynamics of melanoma tumor therapy with vesicular stomatitis virus: Explaining the variability in outcomes using mathematical modeling, Gene Ther., 19 (2012), 543-549.
doi: 10.1038/gt.2011.132. |
[36] |
S. J. Russell, K. W. Peng and J. C. Bell, Oncolytic virotherapy, Nat. Biotechnol., 30 (2012), 658-670.
doi: 10.1038/nbt.2287. |
[37] |
J. R. Tysome, X. Li, S. Wang, P. Wang, D. Gao, P. Du, D. Chen, R. Gangeswaran, L. S. Chard, M. Yuan, G. Alusi, N. R. Lemoine and Y. Wang, A novel therapeutic regimen to eradicate established solid tumors with an effective induction of tumor-specific immunity, Clin. Cancer Res., 18 (2012), 6679-6689.
doi: 10.1158/1078-0432.CCR-12-0979. |
[38] |
M. J. van Stipdonk, E. E. Lemmens and S. P. Schoenberger, Naïve CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation, Nat Immunol., 2 (2001), 423-429. |
[39] |
H. Veiga-Fernandes, U. Walter, C. Bourgeois, A. McLean and B. Rocha, Response of naïve and memory CD8+ T cells to antigen stimulation in vivo, Nat Immunol., 1 (2000), 47-53. |
[40] |
Y. Wang, H. Wang, C. Y. Li and F. Yuan, Effects of rate, volume, and dose of intratumoral infusion on virus dissemination in local gene delivery, Mol. Cancer Ther., 5 (2006), 362-366.
doi: 10.1158/1535-7163.MCT-05-0266. |
[41] |
D. Wodarz, Viruses as antitumor weapons: defining conditions for tumor remission, Cancer Res., 61 (2001), 3501-3507. |
[42] |
D. Wodarz, Computational modeling approaches to studying the dynamics of oncolytic viruses, Math Biosci Eng, 10 (2013), 939-957.
doi: 10.3934/mbe.2013.10.939. |
[43] |
D. Wodarz and N. Komarova, Towards predictive computational models of oncolytic virus therapy: basis for experimental validation and model selection, PLoS ONE, 4 (2009), e4271.
doi: 10.1371/journal.pone.0004271. |
[44] |
S. Worgall, G. Wolff, E. Falck-Pedersen and R. G. Crystal, Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration, Hum. Gene Ther., 8 (1997), 37-44. |
[45] |
J. T. Wu, D. H. Kirn and L. M. Wein, Analysis of a three-way race between tumor growth, a replication-competent virus and an immune response, Bull. Math. Biol., 66 (2004), 605-625.
doi: 10.1016/j.bulm.2003.08.016. |
[46] |
M. Zeyaullah, M. Patro, I. Ahmad, K. Ibraheem, P. Sultan, M. Nehal and A. Ali, Oncolytic viruses in the treatment of cancer: A review of current strategies, Pathol. Oncol. Res., 18 (2012), 771-781.
doi: 10.1007/s12253-012-9548-2. |
[47] |
W. Zhang, G. Fulci, H. Wakimoto, T. A. Cheema, J. S. Buhrman, D. S. Jeyaretna, A. O. Stemmer Rachamimov, S. D. Rabkin and R. L. Martuza, Combination of oncolytic herpes simplex viruses armed with angiostatin and IL-12 enhances antitumor efficacy in human glioblastoma models, Neoplasia, 15 (2013), 591-599.
doi: 10.1593/neo.13158. |
[1] |
Zizi Wang, Zhiming Guo, Huaqin Peng. Dynamical behavior of a new oncolytic virotherapy model based on gene variation. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1079-1093. doi: 10.3934/dcdss.2017058 |
[2] |
Joseph Malinzi, Rachid Ouifki, Amina Eladdadi, Delfim F. M. Torres, K. A. Jane White. Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1435-1463. doi: 10.3934/mbe.2018066 |
[3] |
Elzbieta Ratajczyk, Urszula Ledzewicz, Maciej Leszczynski, Avner Friedman. The role of TNF-α inhibitor in glioma virotherapy: A mathematical model. Mathematical Biosciences & Engineering, 2017, 14 (1) : 305-319. doi: 10.3934/mbe.2017020 |
[4] |
Sophia R-J Jang, Hsiu-Chuan Wei. On a mathematical model of tumor-immune system interactions with an oncolytic virus therapy. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3261-3295. doi: 10.3934/dcdsb.2021184 |
[5] |
Daniel Vasiliu, Jianjun Paul Tian. Periodic solutions of a model for tumor virotherapy. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1587-1597. doi: 10.3934/dcdss.2011.4.1587 |
[6] |
Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche. Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences & Engineering, 2009, 6 (2) : 333-362. doi: 10.3934/mbe.2009.6.333 |
[7] |
Jianjun Paul Tian. The replicability of oncolytic virus: Defining conditions in tumor virotherapy. Mathematical Biosciences & Engineering, 2011, 8 (3) : 841-860. doi: 10.3934/mbe.2011.8.841 |
[8] |
Marcello Delitala, Tommaso Lorenzi. Emergence of spatial patterns in a mathematical model for the co-culture dynamics of epithelial-like and mesenchymal-like cells. Mathematical Biosciences & Engineering, 2017, 14 (1) : 79-93. doi: 10.3934/mbe.2017006 |
[9] |
Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479 |
[10] |
Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic and Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707 |
[11] |
Behzad Ghanbari, Devendra Kumar, Jagdev Singh. An efficient numerical method for fractional model of allelopathic stimulatory phytoplankton species with Mittag-Leffler law. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3577-3587. doi: 10.3934/dcdss.2020428 |
[12] |
Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87 |
[13] |
Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353 |
[14] |
Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems and Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163 |
[15] |
Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565-578. doi: 10.3934/mbe.2013.10.565 |
[16] |
Serge Nicaise. Stability and asymptotic properties of dissipative evolution equations coupled with ordinary differential equations. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021057 |
[17] |
Roderick Melnik, B. Lassen, L. C Lew Yan Voon, M. Willatzen, C. Galeriu. Accounting for nonlinearities in mathematical modelling of quantum dot molecules. Conference Publications, 2005, 2005 (Special) : 642-651. doi: 10.3934/proc.2005.2005.642 |
[18] |
Avner Friedman, Chuan Xue. A mathematical model for chronic wounds. Mathematical Biosciences & Engineering, 2011, 8 (2) : 253-261. doi: 10.3934/mbe.2011.8.253 |
[19] |
José Ignacio Tello. Mathematical analysis of a model of morphogenesis. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 343-361. doi: 10.3934/dcds.2009.25.343 |
[20] |
Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]