• Previous Article
    On viable therapy strategy for a mathematical spatial cancer model describing the dynamics of malignant and healthy cells
  • MBE Home
  • This Issue
  • Next Article
    Construction of Lyapunov functions for some models of infectious diseases in vivo: From simple models to complex models
2015, 12(1): 135-161. doi: 10.3934/mbe.2015.12.135

Analysis of SI models with multiple interacting populations using subpopulations

1. 

Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, MD 21250, United States, United States

2. 

Department of Mathematics, Howard University, Washington, DC 20059, United States

Received  January 2014 Revised  November 2014 Published  December 2014

Computing endemic equilibria and basic reproductive numbers for systems of differential equations describing epidemiological systems with multiple connections between subpopulations is often algebraically intractable. We present an alternative method which deconstructs the larger system into smaller subsystems and captures the interactions between the smaller systems as external forces using an approximate model. We bound the basic reproductive numbers of the full system in terms of the basic reproductive numbers of the smaller systems and use the alternate model to provide approximations for the endemic equilibrium. In addition to creating algebraically tractable reproductive numbers and endemic equilibria, we can demonstrate the influence of the interactions between subpopulations on the basic reproductive number of the full system. The focus of this paper is to provide analytical tools to help guide public health decisions with limited intervention resources.
Citation: Evelyn K. Thomas, Katharine F. Gurski, Kathleen A. Hoffman. Analysis of SI models with multiple interacting populations using subpopulations. Mathematical Biosciences & Engineering, 2015, 12 (1) : 135-161. doi: 10.3934/mbe.2015.12.135
References:
[1]

R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford Science Publications, 1991.

[2]

N. T. Bailey, Application of stochastic epidemic modelling in the public health control of HIV/AIDS, Lecture Notes in Biomathematics, 86 (1990), 14-20. doi: 10.1007/978-3-662-10067-7_2.

[3]

R. J. Beverton and S. J. Holt, The theory of fishing, in Sea Fisheries: Their Investigation in the United Kingdom (ed. M. Graham), Edward Arnold, London, (1956), 372-441.

[4]

F. Bonnet, P. Morlat, G. Chene, P. Mercie, D. Neau, M. Chossat, I. Decoin, F. Djossou, J. Beylot, F. Dabis and Groupe d'Epidemiologie Clinique du SIDA en Aquitaine (GECSA), Causes of death among HIV-infected patients in the era of highly active antiretroviral therapy, Bordeaux, France, 1998-1999, HIV Med., 3 (2002), 195-199. doi: 10.1046/j.1468-1293.2002.00117.x.

[5]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, $2^{nd}$ edition, Springer, New York, 2012. doi: 10.1007/978-1-4757-3516-1.

[6]

C. Castillo-Chavez and B. Li, Spatial spread of sexually transmitted diseases within susceptible populations at demographic steady state, Mathematical Biosciences and Engineering, 5 (2008), 713-727. doi: 10.3934/mbe.2008.5.713.

[7]

C. Castillo-Chavez, Z. Feng and W. Huang, On the computation $\mathcalR_0$ and its role on global stability, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction, The IMA Volumes in Mathematics and its Applications, 125 (2002), 229-250.

[8]

C. Castillo-Chavez, Mathematical and Statistical Approaches to AIDS Epidemiology, Lecture Notes in Biomathematics, 83, 1989. doi: 10.1007/978-3-642-93454-4.

[9]

C. Chiyakia, Z. Mukandavire, P. Das, F. Nyabadza, S. D. Hove Musekwa and H. Mwambi, Theoretical analysis of mixed Plasmodium malariae and Plasmodium falciparum infections with partial cross-immunity, Journal of Theoretical Biology, 263 (2010), 169-178. doi: 10.1016/j.jtbi.2009.10.032.

[10]

C. T. Codeço, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir, BMC Infect Dis., 1 (2001), p1. doi: 10.1186/1471-2334-1-1.

[11]

C. T. Codeço and F. C. Coelho, Trends in cholera epidemiology, PLoS Med., 3 (2006), e42. doi: 10.1371/journal.pmed.0030042.

[12]

M. H. Cohen, A. L. French, L. Benning, A. Kovacs, K. Anastos, M. Young, H. Minko and N. A. Hessol, Causes of death among women with human immunodeficiency virus infection in the era of combination antiretroviral therapy, Am. J. Med., 113 (2002), 91-98. doi: 10.1016/S0002-9343(02)01169-5.

[13]

K. Cooke and J. Yorke, Some equations modelling growth processes and gonorrhea epidemics, Mathematical Biosciences, 16 (1973), 75-101. doi: 10.1016/0025-5564(73)90046-1.

[14]

N. F. Crum, R. H. Rienburgh, S. Wegner, B. K. Agan, S. A. Tasker, K. M. Spooner, A. W. Armstrong, S. Fraser and M. R. Wallace, Comparisons of causes of death and mortality rates among HIV-infected persons: Analysis of the pre-, early, and late HAART eras, J Acquir. Immune Dec. Syndr., 41 (2006), 194-200. doi: 10.1097/01.qai.0000179459.31562.16.

[15]

C. Elton and M. Nicholson, The ten-year cycle in numbers of the lynx in Canada, J. Animal Ecology, 11 (1942), 215-244. doi: 10.2307/1358.

[16]

D. M. Hartley, J. G. Morris and D. L. Smith, Hyperinfectivity: A critical element in the ability of V. Cholerae to cause epidemics?, PLoS Med., 3 (2005), e7. doi: 10.1371/journal.pmed.0030007.

[17]

P. Hartman and C. Olech, On global asymptomatic stability of solutions of differential equations, Trans. Amer. Math. Soc., 104 (1962), 154-178.

[18]

H. W. Hethcote and J. A. Yorke, Gonorrhea Transmission Dynamics and Control, Lecture Notes in Biomathematics, 56. Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-662-07544-9.

[19]

F. C. Hoppensteadt, Mathematical Theories Among Populations: Demographics, Genetics, and Epidemics, SIAM, 1975. doi: 10.1137/1.9781611970487.

[20]

J. M. Hyman, J. Li and E. A. Stanley, The differential infectivity and staged progression models for the transmission of HIV, Mathematical Biosciences, 155 (1999), 77-109. doi: 10.1016/S0025-5564(98)10057-3.

[21]

J. M. Hyman, J. Li and E. A. Stanley, Modeling the impact of random screening and contact tracing in reducing the spread of HIV, Math. Biosci., 181 (2003), 17-54. doi: 10.1016/S0025-5564(02)00128-1.

[22]

J. M. Hyman, J. Li and E. A. Stanley, The initialization and sensitivity of multigroup models for the transmission of HIV, Journal of Theoretical Biology, 208 (2001), 227-249. doi: 10.1006/jtbi.2000.2214.

[23]

J. M. Hyman and E. A. Stanley, Using mathematical models to understand the AIDS epidemic, Mathematical Biosciences, 90 (1988), 415-473. doi: 10.1016/0025-5564(88)90078-8.

[24]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London B Biol. Sci., 115 (1927), 700-721. doi: 10.1098/rspa.1927.0118.

[25]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, part II, Proc. Roy. Soc. London B Biol. Sci., 138 (1932), 55-83.

[26]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, part III, Proc. Roy. Soc. London B Biol. Sci., 141 (1933), 94-112.

[27]

A. Lajmanovich and J. C. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Mathematical Biosciences, 28 (1976), 221-236. doi: 10.1016/0025-5564(76)90125-5.

[28]

M. Y. Li and L. Wang, Global stability in some SEIR epidemic models, in IMA Volumes in Mathematics and its Applications (eds. C. Castillo-Ch\'avez et al.), 126 (2002), 295-311. doi: 10.1007/978-1-4613-0065-6_17.

[29]

A. J. Lotka, Contribution to the theory of periodic reaction, J. Phys. Chem., 14 (1910), 271-274. doi: 10.1021/j150111a004.

[30]

A. J. Lotka, Analytical note on certain rhythmic relations in organic systems, Proc. Natl. Acad. Sci. U.S., 6 (1920), 410-415. doi: 10.1073/pnas.6.7.410.

[31]

A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, 1925.

[32]

S. Maggi and S. Rinaldi, A second-order impact model for forest fire regimes, Theoretical Population Biology, 70 (2006), 174-182. doi: 10.1016/j.tpb.2006.01.007.

[33]

N. Malunguzaa, S. Mushayabasaa, C. Chiyaka and Z. Mukandavire, Modelling the effects of condom use and antiretroviral therapy in controlling HIV/AIDS among heterosexuals, homosexuals and bisexuals, Computational and Mathematical Methods in Medicine, 11 (2010), 201-222. doi: 10.1080/17486700903325167.

[34]

M. May, M. Gompels, V. Delpech, K. Porter, F. Poct, M. Johnson, D. Dinn, A. Palfreeman, R. Gilson, B. Gazzard, T. Hill, J. Walsh, M. Fisher, C. Orkin, J. Ainsworth, L. Bansi, A. Phillips, C. Leen, M. Nelson, J. Anderson and C. Sabin, Impact of late diagnosis and treatment on life expectancy in people with HIV-1: UK Collaborative HIV Cohort (UK CHIC) Study, BMJ, 343 (2011), d6016. doi: 10.1136/bmj.d6016.

[35]

R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467. doi: 10.1038/261459a0.

[36]

W. H. McNeill, Plagues and Peoples, Doubleday, 1976.

[37]

A. Mocroft, R. Brettle, O. Kirk, A. Blaxhult, J. M. Parkin, F. Antunes, P. Francioli, A. d'Arminio Monforte, Z. Fox, J. D. Lundgren and EuroSIDA study group, Changes in the cause of death among HIV positive subjects across Europe: results from the EuroSIDA study, AIDS, 16 (2002), 1663-1671. doi: 10.1097/00002030-200208160-00012.

[38]

A. Mocroft, B. Ledergerber, C. Katlama, O. Kirk, P. Reiss, A. d'Arminio Monforte, B. Knysz, M. Dietrich, A. N. Phillips, J. D. Lundgren and EuroSIDA study group, Decline in the AIDS and death rates in the EuroSIDA study: An observational study, Lancet, 362 (2003), 22-29. doi: 10.1016/S0140-6736(03)13802-0.

[39]

Z. Mukandavire, C. Chiyaka, G. Magombedzea, G. Musukab and N. J. Malunguzaa, Assessing the effects of homosexuals and bisexuals on the intrinsic dynamics of HIV/AIDS in heterosexual settings, Mathematical and Computer Modelling, 49 (2009), 1869-1882. doi: 10.1016/j.mcm.2008.12.012.

[40]

Z. Mukandavire and W. Garira, Age and sex structured model for assessing the demographic impact of mother-to-child transmission of HIV/AIDS, Bulletin of Mathematical Biology, 69 (2007), 2061-2092. doi: 10.1007/s11538-007-9204-2.

[41]

J. D. Murray, Mathematical Biology I: An Introduction, $3^rd$ edition, Springer, 2002.

[42]

F. Nakagawa, R. K. Lodwick, C. J. Smith, R. Smith, V. Cambiano, J. D. Lundgren, V. Delpech and A. N. Phillips, Projected life expectancy of people with HIV according to timing of diagnosis, AIDS, 26 (2012), 335-343. doi: 10.1097/QAD.0b013e32834dcec9.

[43]

F. Nakagawa, M. May and A. Phillips, Life expectancy living with HIV: Recent estimates and future implications, Curr. Opin. Infect. Dis., 26 (2013), 17-25. doi: 10.1097/QCO.0b013e32835ba6b1.

[44]

M. Nuño, Z. Feng, M. Martcheva and C. Castillo-Chavez, Dynamics of two-strain influenza with isolation and partial cross-immunity, SIAM Journal of Applied Mathematics, 65 (2005), 964-982. doi: 10.1137/S003613990343882X.

[45]

E. Odum, Fundamentals of Ecology, Bulletin of the Torrey Botanical Club, 82 (1955), 400-401. doi: 10.2307/2482488.

[46]

C. Olech, On the global stability of an autonomous system on the plane, in On Global Univalence Theorems, Lecture Notes in Mathematics, 977 (1983), 59-467. doi: 10.1007/BFb0065573.

[47]

F. J. Palella, K. M. Delaney, A. C. Moorman, M. O. Loveless, J. Fuhrer, G. A. Satten, D. J. Aschman, S. D. Holmberg, and the HIV Outpatient Study Investigators, Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection, N. Engl. J. Med., 338 (1998), 853-860. doi: 10.1056/NEJM199803263381301.

[48]

C. N. Podder, O. Sharomi, A. B. Gumel, B. Song and E. Strawbridge, Mathematical analysis of a model for assessing the impact of antiretroviral therapy, voluntary testing and condom use in curtailing the spread of HIV, Differential Equations and Dynamical Systems: International Journal for Theory, Real World Modelling and Simulations, 19 (2011), 283-302. doi: 10.1007/s12591-011-0090-6.

[49]

T. C. Porco and S. M. Blower, HIV vaccines: The effect of the mode of action on the coexistence of HIV subtypes, Mathematical Population Studies, 8 (2000), 205-229. doi: 10.1080/08898480009525481.

[50]

M. Porta, A Dictionary of Epidemiology, $5^{th}$ edition, Oxford University Press, 2008.

[51]

W. E. Ricker, Stock and Recruitment, J. Fisher. Res. Board Can., 5 (1954), 559-623. doi: 10.1139/f54-039.

[52]

R. Ross, The Prevention of Malaria, $2^{nd}$ edition, E.P Dutton and Co., 1910.

[53]

D. Salmon Ceron, C. Lewden, P. Morlat, S. Bévilacqua, E. Jougla, F. Bonnet, L. Héripret, D Costagliola, T. May and G. Chêne, Liver disease as a major cause of death among HIV infected patients: Role of hepatitis C and B viruses and alcohol, J. Hepatol., 42 (2005), 799-805. doi: 10.1016/j.jhep.2005.01.022.

[54]

M. B. Schaefer, Some aspects of the dynamics of populations important to the management of commercial marine species, Bulletin of the Inter-American Tropical Tuna Commission, 1 (1954), 27-56.

[55]

The Antiretroviral Therapy Cohort Collaboration, Life expectancy of individuals on combination antiretroviral therapy in high-income countries: A collaborative analysis of 14 cohort studies, Lancet, 372 (2008), 293-299. doi: 10.1016/S0140-6736(08)61113-7.

[56]

H. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational Biology, 2003.

[57]

A. Van Sighem, L. Gras, P. Reiss, K. Brinkman and F. de Wolf, Life expectancy of recently diagnosed asymptomatic HIV-infected patients approaches that of uninfected individuals, AIDS, 24 (2010), 1527-1535. doi: 10.1097/QAD.0b013e32833a3946.

[58]

J. X. Velasco-Hernandez and Y. H. Hsieh, Modelling the effect of treatment and behavior change in HIV-transmission dynamics, Journal of Mathematical Biology, 32 (1994), 233-249. doi: 10.1007/BF00163880.

[59]

V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, Mem. R. Acad. Naz. dei Lincei, 4 (1926), 31-113.

[60]

V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, J. Cons. int. Explor. Mer., 3 (1928), 3-51. doi: 10.1093/icesjms/3.1.3.

[61]

L. Wang and G.-Z. Dai, Global stability of virus spreading in complex heterogeneous networks, SIAM J. Appl. Math, 68 (2008), 1495-1502. doi: 10.1137/070694582.

show all references

References:
[1]

R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford Science Publications, 1991.

[2]

N. T. Bailey, Application of stochastic epidemic modelling in the public health control of HIV/AIDS, Lecture Notes in Biomathematics, 86 (1990), 14-20. doi: 10.1007/978-3-662-10067-7_2.

[3]

R. J. Beverton and S. J. Holt, The theory of fishing, in Sea Fisheries: Their Investigation in the United Kingdom (ed. M. Graham), Edward Arnold, London, (1956), 372-441.

[4]

F. Bonnet, P. Morlat, G. Chene, P. Mercie, D. Neau, M. Chossat, I. Decoin, F. Djossou, J. Beylot, F. Dabis and Groupe d'Epidemiologie Clinique du SIDA en Aquitaine (GECSA), Causes of death among HIV-infected patients in the era of highly active antiretroviral therapy, Bordeaux, France, 1998-1999, HIV Med., 3 (2002), 195-199. doi: 10.1046/j.1468-1293.2002.00117.x.

[5]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, $2^{nd}$ edition, Springer, New York, 2012. doi: 10.1007/978-1-4757-3516-1.

[6]

C. Castillo-Chavez and B. Li, Spatial spread of sexually transmitted diseases within susceptible populations at demographic steady state, Mathematical Biosciences and Engineering, 5 (2008), 713-727. doi: 10.3934/mbe.2008.5.713.

[7]

C. Castillo-Chavez, Z. Feng and W. Huang, On the computation $\mathcalR_0$ and its role on global stability, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction, The IMA Volumes in Mathematics and its Applications, 125 (2002), 229-250.

[8]

C. Castillo-Chavez, Mathematical and Statistical Approaches to AIDS Epidemiology, Lecture Notes in Biomathematics, 83, 1989. doi: 10.1007/978-3-642-93454-4.

[9]

C. Chiyakia, Z. Mukandavire, P. Das, F. Nyabadza, S. D. Hove Musekwa and H. Mwambi, Theoretical analysis of mixed Plasmodium malariae and Plasmodium falciparum infections with partial cross-immunity, Journal of Theoretical Biology, 263 (2010), 169-178. doi: 10.1016/j.jtbi.2009.10.032.

[10]

C. T. Codeço, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir, BMC Infect Dis., 1 (2001), p1. doi: 10.1186/1471-2334-1-1.

[11]

C. T. Codeço and F. C. Coelho, Trends in cholera epidemiology, PLoS Med., 3 (2006), e42. doi: 10.1371/journal.pmed.0030042.

[12]

M. H. Cohen, A. L. French, L. Benning, A. Kovacs, K. Anastos, M. Young, H. Minko and N. A. Hessol, Causes of death among women with human immunodeficiency virus infection in the era of combination antiretroviral therapy, Am. J. Med., 113 (2002), 91-98. doi: 10.1016/S0002-9343(02)01169-5.

[13]

K. Cooke and J. Yorke, Some equations modelling growth processes and gonorrhea epidemics, Mathematical Biosciences, 16 (1973), 75-101. doi: 10.1016/0025-5564(73)90046-1.

[14]

N. F. Crum, R. H. Rienburgh, S. Wegner, B. K. Agan, S. A. Tasker, K. M. Spooner, A. W. Armstrong, S. Fraser and M. R. Wallace, Comparisons of causes of death and mortality rates among HIV-infected persons: Analysis of the pre-, early, and late HAART eras, J Acquir. Immune Dec. Syndr., 41 (2006), 194-200. doi: 10.1097/01.qai.0000179459.31562.16.

[15]

C. Elton and M. Nicholson, The ten-year cycle in numbers of the lynx in Canada, J. Animal Ecology, 11 (1942), 215-244. doi: 10.2307/1358.

[16]

D. M. Hartley, J. G. Morris and D. L. Smith, Hyperinfectivity: A critical element in the ability of V. Cholerae to cause epidemics?, PLoS Med., 3 (2005), e7. doi: 10.1371/journal.pmed.0030007.

[17]

P. Hartman and C. Olech, On global asymptomatic stability of solutions of differential equations, Trans. Amer. Math. Soc., 104 (1962), 154-178.

[18]

H. W. Hethcote and J. A. Yorke, Gonorrhea Transmission Dynamics and Control, Lecture Notes in Biomathematics, 56. Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-662-07544-9.

[19]

F. C. Hoppensteadt, Mathematical Theories Among Populations: Demographics, Genetics, and Epidemics, SIAM, 1975. doi: 10.1137/1.9781611970487.

[20]

J. M. Hyman, J. Li and E. A. Stanley, The differential infectivity and staged progression models for the transmission of HIV, Mathematical Biosciences, 155 (1999), 77-109. doi: 10.1016/S0025-5564(98)10057-3.

[21]

J. M. Hyman, J. Li and E. A. Stanley, Modeling the impact of random screening and contact tracing in reducing the spread of HIV, Math. Biosci., 181 (2003), 17-54. doi: 10.1016/S0025-5564(02)00128-1.

[22]

J. M. Hyman, J. Li and E. A. Stanley, The initialization and sensitivity of multigroup models for the transmission of HIV, Journal of Theoretical Biology, 208 (2001), 227-249. doi: 10.1006/jtbi.2000.2214.

[23]

J. M. Hyman and E. A. Stanley, Using mathematical models to understand the AIDS epidemic, Mathematical Biosciences, 90 (1988), 415-473. doi: 10.1016/0025-5564(88)90078-8.

[24]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London B Biol. Sci., 115 (1927), 700-721. doi: 10.1098/rspa.1927.0118.

[25]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, part II, Proc. Roy. Soc. London B Biol. Sci., 138 (1932), 55-83.

[26]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, part III, Proc. Roy. Soc. London B Biol. Sci., 141 (1933), 94-112.

[27]

A. Lajmanovich and J. C. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Mathematical Biosciences, 28 (1976), 221-236. doi: 10.1016/0025-5564(76)90125-5.

[28]

M. Y. Li and L. Wang, Global stability in some SEIR epidemic models, in IMA Volumes in Mathematics and its Applications (eds. C. Castillo-Ch\'avez et al.), 126 (2002), 295-311. doi: 10.1007/978-1-4613-0065-6_17.

[29]

A. J. Lotka, Contribution to the theory of periodic reaction, J. Phys. Chem., 14 (1910), 271-274. doi: 10.1021/j150111a004.

[30]

A. J. Lotka, Analytical note on certain rhythmic relations in organic systems, Proc. Natl. Acad. Sci. U.S., 6 (1920), 410-415. doi: 10.1073/pnas.6.7.410.

[31]

A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, 1925.

[32]

S. Maggi and S. Rinaldi, A second-order impact model for forest fire regimes, Theoretical Population Biology, 70 (2006), 174-182. doi: 10.1016/j.tpb.2006.01.007.

[33]

N. Malunguzaa, S. Mushayabasaa, C. Chiyaka and Z. Mukandavire, Modelling the effects of condom use and antiretroviral therapy in controlling HIV/AIDS among heterosexuals, homosexuals and bisexuals, Computational and Mathematical Methods in Medicine, 11 (2010), 201-222. doi: 10.1080/17486700903325167.

[34]

M. May, M. Gompels, V. Delpech, K. Porter, F. Poct, M. Johnson, D. Dinn, A. Palfreeman, R. Gilson, B. Gazzard, T. Hill, J. Walsh, M. Fisher, C. Orkin, J. Ainsworth, L. Bansi, A. Phillips, C. Leen, M. Nelson, J. Anderson and C. Sabin, Impact of late diagnosis and treatment on life expectancy in people with HIV-1: UK Collaborative HIV Cohort (UK CHIC) Study, BMJ, 343 (2011), d6016. doi: 10.1136/bmj.d6016.

[35]

R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467. doi: 10.1038/261459a0.

[36]

W. H. McNeill, Plagues and Peoples, Doubleday, 1976.

[37]

A. Mocroft, R. Brettle, O. Kirk, A. Blaxhult, J. M. Parkin, F. Antunes, P. Francioli, A. d'Arminio Monforte, Z. Fox, J. D. Lundgren and EuroSIDA study group, Changes in the cause of death among HIV positive subjects across Europe: results from the EuroSIDA study, AIDS, 16 (2002), 1663-1671. doi: 10.1097/00002030-200208160-00012.

[38]

A. Mocroft, B. Ledergerber, C. Katlama, O. Kirk, P. Reiss, A. d'Arminio Monforte, B. Knysz, M. Dietrich, A. N. Phillips, J. D. Lundgren and EuroSIDA study group, Decline in the AIDS and death rates in the EuroSIDA study: An observational study, Lancet, 362 (2003), 22-29. doi: 10.1016/S0140-6736(03)13802-0.

[39]

Z. Mukandavire, C. Chiyaka, G. Magombedzea, G. Musukab and N. J. Malunguzaa, Assessing the effects of homosexuals and bisexuals on the intrinsic dynamics of HIV/AIDS in heterosexual settings, Mathematical and Computer Modelling, 49 (2009), 1869-1882. doi: 10.1016/j.mcm.2008.12.012.

[40]

Z. Mukandavire and W. Garira, Age and sex structured model for assessing the demographic impact of mother-to-child transmission of HIV/AIDS, Bulletin of Mathematical Biology, 69 (2007), 2061-2092. doi: 10.1007/s11538-007-9204-2.

[41]

J. D. Murray, Mathematical Biology I: An Introduction, $3^rd$ edition, Springer, 2002.

[42]

F. Nakagawa, R. K. Lodwick, C. J. Smith, R. Smith, V. Cambiano, J. D. Lundgren, V. Delpech and A. N. Phillips, Projected life expectancy of people with HIV according to timing of diagnosis, AIDS, 26 (2012), 335-343. doi: 10.1097/QAD.0b013e32834dcec9.

[43]

F. Nakagawa, M. May and A. Phillips, Life expectancy living with HIV: Recent estimates and future implications, Curr. Opin. Infect. Dis., 26 (2013), 17-25. doi: 10.1097/QCO.0b013e32835ba6b1.

[44]

M. Nuño, Z. Feng, M. Martcheva and C. Castillo-Chavez, Dynamics of two-strain influenza with isolation and partial cross-immunity, SIAM Journal of Applied Mathematics, 65 (2005), 964-982. doi: 10.1137/S003613990343882X.

[45]

E. Odum, Fundamentals of Ecology, Bulletin of the Torrey Botanical Club, 82 (1955), 400-401. doi: 10.2307/2482488.

[46]

C. Olech, On the global stability of an autonomous system on the plane, in On Global Univalence Theorems, Lecture Notes in Mathematics, 977 (1983), 59-467. doi: 10.1007/BFb0065573.

[47]

F. J. Palella, K. M. Delaney, A. C. Moorman, M. O. Loveless, J. Fuhrer, G. A. Satten, D. J. Aschman, S. D. Holmberg, and the HIV Outpatient Study Investigators, Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection, N. Engl. J. Med., 338 (1998), 853-860. doi: 10.1056/NEJM199803263381301.

[48]

C. N. Podder, O. Sharomi, A. B. Gumel, B. Song and E. Strawbridge, Mathematical analysis of a model for assessing the impact of antiretroviral therapy, voluntary testing and condom use in curtailing the spread of HIV, Differential Equations and Dynamical Systems: International Journal for Theory, Real World Modelling and Simulations, 19 (2011), 283-302. doi: 10.1007/s12591-011-0090-6.

[49]

T. C. Porco and S. M. Blower, HIV vaccines: The effect of the mode of action on the coexistence of HIV subtypes, Mathematical Population Studies, 8 (2000), 205-229. doi: 10.1080/08898480009525481.

[50]

M. Porta, A Dictionary of Epidemiology, $5^{th}$ edition, Oxford University Press, 2008.

[51]

W. E. Ricker, Stock and Recruitment, J. Fisher. Res. Board Can., 5 (1954), 559-623. doi: 10.1139/f54-039.

[52]

R. Ross, The Prevention of Malaria, $2^{nd}$ edition, E.P Dutton and Co., 1910.

[53]

D. Salmon Ceron, C. Lewden, P. Morlat, S. Bévilacqua, E. Jougla, F. Bonnet, L. Héripret, D Costagliola, T. May and G. Chêne, Liver disease as a major cause of death among HIV infected patients: Role of hepatitis C and B viruses and alcohol, J. Hepatol., 42 (2005), 799-805. doi: 10.1016/j.jhep.2005.01.022.

[54]

M. B. Schaefer, Some aspects of the dynamics of populations important to the management of commercial marine species, Bulletin of the Inter-American Tropical Tuna Commission, 1 (1954), 27-56.

[55]

The Antiretroviral Therapy Cohort Collaboration, Life expectancy of individuals on combination antiretroviral therapy in high-income countries: A collaborative analysis of 14 cohort studies, Lancet, 372 (2008), 293-299. doi: 10.1016/S0140-6736(08)61113-7.

[56]

H. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational Biology, 2003.

[57]

A. Van Sighem, L. Gras, P. Reiss, K. Brinkman and F. de Wolf, Life expectancy of recently diagnosed asymptomatic HIV-infected patients approaches that of uninfected individuals, AIDS, 24 (2010), 1527-1535. doi: 10.1097/QAD.0b013e32833a3946.

[58]

J. X. Velasco-Hernandez and Y. H. Hsieh, Modelling the effect of treatment and behavior change in HIV-transmission dynamics, Journal of Mathematical Biology, 32 (1994), 233-249. doi: 10.1007/BF00163880.

[59]

V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, Mem. R. Acad. Naz. dei Lincei, 4 (1926), 31-113.

[60]

V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, J. Cons. int. Explor. Mer., 3 (1928), 3-51. doi: 10.1093/icesjms/3.1.3.

[61]

L. Wang and G.-Z. Dai, Global stability of virus spreading in complex heterogeneous networks, SIAM J. Appl. Math, 68 (2008), 1495-1502. doi: 10.1137/070694582.

[1]

Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377-393. doi: 10.3934/mbe.2009.6.377

[2]

David Greenhalgh, Wafa Al-Fwzan. An improved optimistic three-stage model for the spread of HIV amongst injecting intravenous drug users. Conference Publications, 2009, 2009 (Special) : 286-299. doi: 10.3934/proc.2009.2009.286

[3]

Gigi Thomas, Edward M. Lungu. A two-sex model for the influence of heavy alcohol consumption on the spread of HIV/AIDS. Mathematical Biosciences & Engineering, 2010, 7 (4) : 871-904. doi: 10.3934/mbe.2010.7.871

[4]

Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure and Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002

[5]

Fred Brauer. A model for an SI disease in an age - structured population. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 257-264. doi: 10.3934/dcdsb.2002.2.257

[6]

Arnaud Ducrot, Michel Langlais, Pierre Magal. Multiple travelling waves for an $SI$-epidemic model. Networks and Heterogeneous Media, 2013, 8 (1) : 171-190. doi: 10.3934/nhm.2013.8.171

[7]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[8]

Cristiana J. Silva. Stability and optimal control of a delayed HIV/AIDS-PrEP model. Discrete and Continuous Dynamical Systems - S, 2022, 15 (3) : 639-654. doi: 10.3934/dcdss.2021156

[9]

Sabri Bensid, Jesús Ildefonso Díaz. On the exact number of monotone solutions of a simplified Budyko climate model and their different stability. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1033-1047. doi: 10.3934/dcdsb.2019005

[10]

Arnaud Ducrot, Michel Langlais, Pierre Magal. Qualitative analysis and travelling wave solutions for the SI model with vertical transmission. Communications on Pure and Applied Analysis, 2012, 11 (1) : 97-113. doi: 10.3934/cpaa.2012.11.97

[11]

Jia-Bing Wang, Shao-Xia Qiao, Chufen Wu. Wave phenomena in a compartmental epidemic model with nonlocal dispersal and relapse. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2635-2660. doi: 10.3934/dcdsb.2021152

[12]

Xiaoqian Gong, Benedetto Piccoli. A measure model for the spread of viral infections with mutations. Networks and Heterogeneous Media, 2022, 17 (3) : 427-442. doi: 10.3934/nhm.2022015

[13]

Ariel Cintrón-Arias, Carlos Castillo-Chávez, Luís M. A. Bettencourt, Alun L. Lloyd, H. T. Banks. The estimation of the effective reproductive number from disease outbreak data. Mathematical Biosciences & Engineering, 2009, 6 (2) : 261-282. doi: 10.3934/mbe.2009.6.261

[14]

Filipe Rodrigues, Cristiana J. Silva, Delfim F. M. Torres, Helmut Maurer. Optimal control of a delayed HIV model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 443-458. doi: 10.3934/dcdsb.2018030

[15]

Jinliang Wang, Lijuan Guan. Global stability for a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 297-302. doi: 10.3934/dcdsb.2012.17.297

[16]

Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525

[17]

Shengqiang Liu, Lin Wang. Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences & Engineering, 2010, 7 (3) : 675-685. doi: 10.3934/mbe.2010.7.675

[18]

Claude-Michel Brauner, Xinyue Fan, Luca Lorenzi. Two-dimensional stability analysis in a HIV model with quadratic logistic growth term. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1813-1844. doi: 10.3934/cpaa.2013.12.1813

[19]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3541-3556. doi: 10.3934/dcdss.2020441

[20]

A. M. Elaiw, N. H. AlShamrani. Global stability of HIV/HTLV co-infection model with CTL-mediated immunity. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1725-1764. doi: 10.3934/dcdsb.2021108

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (1)

[Back to Top]