-
Previous Article
Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach
- MBE Home
- This Issue
-
Next Article
A singularly perturbed HIV model with treatment and antigenic variation
A double age-structured model of the co-infection of tuberculosis and HIV
1. | Mathematics Department, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067, United States |
References:
[1] |
A. L. Bauer, I. B. Hogue, S. Marino and D. Kirschner, The effects of hiv-1 infection on latent tuberculosis, Math. Model. Nat. Phenom., 3 (2008), 229-266.
doi: 10.1051/mmnp:2008051. |
[2] |
C. Currie, B. Williams, R. Cheng and C. Dye, Tuberculosis epidemics driven by hiv: Is prevention better than cure?, AIDS, 17 (2003), 2501-2508.
doi: 10.1097/00002030-200311210-00013. |
[3] |
J. L. Flynn and J. Chan, Tuberculosis: Latency and reactivation, Infection and Immunity, 69 (2001), 4195-4201, URL http://iai.asm.org/content/69/7/4195.short. |
[4] |
T. D. Hollingsworth, R. M. Anderson and C. Fraser, Hiv-1 transmission, by stage of infection, Journal of Infectious Diseases, 198 (2008), 687-693.
doi: 10.1086/590501. |
[5] |
D. Kirschner, Dynamics of co-infection with m. tuberculosis and hiv-1, Theor Popul Biol., 55 (1999), 94-109. |
[6] |
S. D. Lawn, A. D. Kerkhoff, M. Vogt and R. Wood, Hiv-associated tuberculosis: Relationship between disease severity and the sensitivity of new sputum-based and urine-based diagnostic assays, BMC Medicine, 11 (2013), p231.
doi: 10.1186/1741-7015-11-231. |
[7] |
P. Nunn, A. Reid and K. M. De Cock, Tuberculosis and hiv infection: The global setting, Journal of Infectious Diseases, 196 (2007), S5-S14.
doi: 10.1086/518660. |
[8] | |
[9] |
A. Pawlowski, M. Jansson, M. Sköld, M. Rottenberg and G. Källenius, Tuberculosis and hiv co-infection, PLoS Pathog, 8 (2012), e1002464.
doi: 10.1371/journal.ppat.1002464. |
[10] |
L. Roeger, Z. Feng and C. Castillo-Chavez, Modeling tb and hiv co-infections, Math Biosci Eng, 6 (2009), 815-837.
doi: 10.3934/mbe.2009.6.815. |
[11] |
O. Sharomi, C. Podder, A. Gumel and B. Song, Mathematical analysis of the transmission dynamics of hiv/tb coinfection in the presence of treatment, Math Biosci Eng., 5 (2008), 145-174.
doi: 10.3934/mbe.2008.5.145. |
[12] |
X. Wang, J. Yang and F. Zhang, Dynamic of a tb-hiv coinfection epidemic model with latent age, Journal of Applied Mathematics, 2013 (2013), Art. ID 429567, 13 pp. |
[13] |
G. F. Webb, Theory of Nonlinear Age-Dependant Population Dynamics, Monographs and Textbooks in Pure and Applied Mathematics Series 89. Marcel Dekker Inc., 1985. |
show all references
References:
[1] |
A. L. Bauer, I. B. Hogue, S. Marino and D. Kirschner, The effects of hiv-1 infection on latent tuberculosis, Math. Model. Nat. Phenom., 3 (2008), 229-266.
doi: 10.1051/mmnp:2008051. |
[2] |
C. Currie, B. Williams, R. Cheng and C. Dye, Tuberculosis epidemics driven by hiv: Is prevention better than cure?, AIDS, 17 (2003), 2501-2508.
doi: 10.1097/00002030-200311210-00013. |
[3] |
J. L. Flynn and J. Chan, Tuberculosis: Latency and reactivation, Infection and Immunity, 69 (2001), 4195-4201, URL http://iai.asm.org/content/69/7/4195.short. |
[4] |
T. D. Hollingsworth, R. M. Anderson and C. Fraser, Hiv-1 transmission, by stage of infection, Journal of Infectious Diseases, 198 (2008), 687-693.
doi: 10.1086/590501. |
[5] |
D. Kirschner, Dynamics of co-infection with m. tuberculosis and hiv-1, Theor Popul Biol., 55 (1999), 94-109. |
[6] |
S. D. Lawn, A. D. Kerkhoff, M. Vogt and R. Wood, Hiv-associated tuberculosis: Relationship between disease severity and the sensitivity of new sputum-based and urine-based diagnostic assays, BMC Medicine, 11 (2013), p231.
doi: 10.1186/1741-7015-11-231. |
[7] |
P. Nunn, A. Reid and K. M. De Cock, Tuberculosis and hiv infection: The global setting, Journal of Infectious Diseases, 196 (2007), S5-S14.
doi: 10.1086/518660. |
[8] | |
[9] |
A. Pawlowski, M. Jansson, M. Sköld, M. Rottenberg and G. Källenius, Tuberculosis and hiv co-infection, PLoS Pathog, 8 (2012), e1002464.
doi: 10.1371/journal.ppat.1002464. |
[10] |
L. Roeger, Z. Feng and C. Castillo-Chavez, Modeling tb and hiv co-infections, Math Biosci Eng, 6 (2009), 815-837.
doi: 10.3934/mbe.2009.6.815. |
[11] |
O. Sharomi, C. Podder, A. Gumel and B. Song, Mathematical analysis of the transmission dynamics of hiv/tb coinfection in the presence of treatment, Math Biosci Eng., 5 (2008), 145-174.
doi: 10.3934/mbe.2008.5.145. |
[12] |
X. Wang, J. Yang and F. Zhang, Dynamic of a tb-hiv coinfection epidemic model with latent age, Journal of Applied Mathematics, 2013 (2013), Art. ID 429567, 13 pp. |
[13] |
G. F. Webb, Theory of Nonlinear Age-Dependant Population Dynamics, Monographs and Textbooks in Pure and Applied Mathematics Series 89. Marcel Dekker Inc., 1985. |
[1] |
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595 |
[2] |
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37 |
[3] |
Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche. Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences & Engineering, 2009, 6 (2) : 333-362. doi: 10.3934/mbe.2009.6.333 |
[4] |
Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166 |
[5] |
Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170 |
[6] |
Zhong-Kai Guo, Hai-Feng Huo, Hong Xiang. Analysis of an age-structured model for HIV-TB co-infection. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 199-228. doi: 10.3934/dcdsb.2021037 |
[7] |
Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455 |
[8] |
Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239 |
[9] |
Svend Christensen, Preben Klarskov Hansen, Guozheng Qi, Jihuai Wang. The mathematical method of studying the reproduction structure of weeds and its application to Bromus sterilis. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 777-788. doi: 10.3934/dcdsb.2004.4.777 |
[10] |
Expeditho Mtisi, Herieth Rwezaura, Jean Michel Tchuenche. A mathematical analysis of malaria and tuberculosis co-dynamics. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 827-864. doi: 10.3934/dcdsb.2009.12.827 |
[11] |
Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure and Applied Analysis, 2021, 20 (2) : 755-762. doi: 10.3934/cpaa.2020288 |
[12] |
Kazeem Oare Okosun, Robert Smith?. Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences & Engineering, 2017, 14 (2) : 377-405. doi: 10.3934/mbe.2017024 |
[13] |
Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377-393. doi: 10.3934/mbe.2009.6.377 |
[14] |
Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457-470. doi: 10.3934/mbe.2007.4.457 |
[15] |
Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565 |
[16] |
Gabriela Marinoschi. Identification of transmission rates and reproduction number in a SARS-CoV-2 epidemic model. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022128 |
[17] |
A. M. Elaiw, N. H. AlShamrani. Global stability of HIV/HTLV co-infection model with CTL-mediated immunity. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1725-1764. doi: 10.3934/dcdsb.2021108 |
[18] |
Chang Gong, Jennifer J. Linderman, Denise Kirschner. A population model capturing dynamics of tuberculosis granulomas predicts host infection outcomes. Mathematical Biosciences & Engineering, 2015, 12 (3) : 625-642. doi: 10.3934/mbe.2015.12.625 |
[19] |
Suxia Zhang, Xiaxia Xu. A mathematical model for hepatitis B with infection-age structure. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1329-1346. doi: 10.3934/dcdsb.2016.21.1329 |
[20] |
Luca Gerardo-Giorda, Pierre Magal, Shigui Ruan, Ousmane Seydi, Glenn Webb. Preface: Population dynamics in epidemiology and ecology. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : i-ii. doi: 10.3934/dcdsb.2020125 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]