-
Previous Article
A note on modelling with measures: Two-features balance equations
- MBE Home
- This Issue
-
Next Article
Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model
Riemann problems with non--local point constraints and capacity drop
1. | Laboratoire de Mathématiques CNRS UMR 6623, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France, France |
2. | ICM, Uniwersytet Warszawski, ul. Prosta 69, 00838 Warsaw, Poland |
We also give the detailed proof of some results announced in the paper [Andreianov, Donadello, Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop], which is devoted to existence and stability for a more general class of Cauchy problems subject to Lipschitz continuous non--local point constraints.
References:
[1] |
D. Amadori and W. Shen, An integro-differential conservation law arising in a model of granular flow, J. Hyperbolic Differ. Equ., 9 (2012), 105-131.
doi: 10.1142/S0219891612500038. |
[2] |
B. Andreianov, C. Donadello, U. Razafison and M. D. Rosini, Numerical simulations for conservation laws with non-local point constraints in crowd dynamics, In preparation, 2014. |
[3] |
B. Andreianov, P. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws, Numerische Mathematik, 115 (2010), 609-645.
doi: 10.1007/s00211-009-0286-7. |
[4] |
B. Andreianov, C. Donadello and M. D. Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop, Mathematical Models and Methods in Applied Sciences, 24 (2014), 2685-2722.
doi: 10.1142/S0218202514500341. |
[5] |
A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000. |
[6] |
E. M. Cepolina, Phased evacuation: An optimisation model which takes into account the capacity drop phenomenon in pedestrian flows, Fire Safety Journal, 44 (2009), 532-544.
doi: 10.1016/j.firesaf.2008.11.002. |
[7] |
R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, J. Differential Equations, 234 (2007), 654-675.
doi: 10.1016/j.jde.2006.10.014. |
[8] |
R. M. Colombo and F. S. Priuli, Characterization of Riemann solvers for the two phase p-system, Comm. Partial Differential Equations, 28 (2003), 1371-1389.
doi: 10.1081/PDE-120024372. |
[9] |
R. M. Colombo and M. D. Rosini, Pedestrian flows and non-classical shocks, Math. Methods Appl. Sci., 28 (2005), 1553-1567.
doi: 10.1002/mma.624. |
[10] |
R. M. Colombo and M. D. Rosini, Existence of nonclassical solutions in a Pedestrian flow model, Nonlinear Analysis: Real World Applications, 10 (2009), 2716-2728.
doi: 10.1016/j.nonrwa.2008.08.002. |
[11] |
C. M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl., 38 (1972), 33-41.
doi: 10.1016/0022-247X(72)90114-X. |
[12] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Grundlehren der Mathematischen Wissenschaften, 325, Springer-Verlag, Berlin, 2000.
doi: 10.1007/3-540-29089-3_14. |
[13] |
C. M. Dafermos and L. Hsiao, Hyperbolic systems and balance laws with inhomogeneity and dissipation, Indiana Univ. Math. J., 31 (1982), 471-491.
doi: 10.1512/iumj.1982.31.31039. |
[14] |
N. El-Khatib, P. Goatin and M. D. Rosini, On entropy weak solutions of Hughes' model for pedestrian motion, Zeitschrift für angewandte Mathematik und Physik, 64 (2013), 223-251.
doi: 10.1007/s00033-012-0232-x. |
[15] |
E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences, 18, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-0713-9. |
[16] |
E. Isaacson and B. Temple, Convergence of the $2\times 2$ Godunov method for a general resonant nonlinear balance law, SIAM J. Appl. Math., 55 (1995), 625-640.
doi: 10.1137/S0036139992240711. |
[17] |
S. N. Kružhkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255. |
[18] |
P. G. Lefloch, Hyperbolic Systems of Conservation Laws, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2002.
doi: 10.1007/978-3-0348-8150-0. |
[19] |
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511791253. |
[20] |
M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[21] |
E. Y. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws, J. Hyperbolic Differ. Equ., 4 (2007), 729-770.
doi: 10.1142/S0219891607001343. |
[22] |
P. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |
[23] |
M. D. Rosini, Nonclassical interactions portrait in a macroscopic pedestrian flow model, J. Differential Equations, 246 (2009), 408-427.
doi: 10.1016/j.jde.2008.03.018. |
[24] |
A. Vasseur, Strong traces for solutions of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., 160 (2001), 181-193.
doi: 10.1007/s002050100157. |
show all references
References:
[1] |
D. Amadori and W. Shen, An integro-differential conservation law arising in a model of granular flow, J. Hyperbolic Differ. Equ., 9 (2012), 105-131.
doi: 10.1142/S0219891612500038. |
[2] |
B. Andreianov, C. Donadello, U. Razafison and M. D. Rosini, Numerical simulations for conservation laws with non-local point constraints in crowd dynamics, In preparation, 2014. |
[3] |
B. Andreianov, P. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws, Numerische Mathematik, 115 (2010), 609-645.
doi: 10.1007/s00211-009-0286-7. |
[4] |
B. Andreianov, C. Donadello and M. D. Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop, Mathematical Models and Methods in Applied Sciences, 24 (2014), 2685-2722.
doi: 10.1142/S0218202514500341. |
[5] |
A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000. |
[6] |
E. M. Cepolina, Phased evacuation: An optimisation model which takes into account the capacity drop phenomenon in pedestrian flows, Fire Safety Journal, 44 (2009), 532-544.
doi: 10.1016/j.firesaf.2008.11.002. |
[7] |
R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, J. Differential Equations, 234 (2007), 654-675.
doi: 10.1016/j.jde.2006.10.014. |
[8] |
R. M. Colombo and F. S. Priuli, Characterization of Riemann solvers for the two phase p-system, Comm. Partial Differential Equations, 28 (2003), 1371-1389.
doi: 10.1081/PDE-120024372. |
[9] |
R. M. Colombo and M. D. Rosini, Pedestrian flows and non-classical shocks, Math. Methods Appl. Sci., 28 (2005), 1553-1567.
doi: 10.1002/mma.624. |
[10] |
R. M. Colombo and M. D. Rosini, Existence of nonclassical solutions in a Pedestrian flow model, Nonlinear Analysis: Real World Applications, 10 (2009), 2716-2728.
doi: 10.1016/j.nonrwa.2008.08.002. |
[11] |
C. M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl., 38 (1972), 33-41.
doi: 10.1016/0022-247X(72)90114-X. |
[12] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Grundlehren der Mathematischen Wissenschaften, 325, Springer-Verlag, Berlin, 2000.
doi: 10.1007/3-540-29089-3_14. |
[13] |
C. M. Dafermos and L. Hsiao, Hyperbolic systems and balance laws with inhomogeneity and dissipation, Indiana Univ. Math. J., 31 (1982), 471-491.
doi: 10.1512/iumj.1982.31.31039. |
[14] |
N. El-Khatib, P. Goatin and M. D. Rosini, On entropy weak solutions of Hughes' model for pedestrian motion, Zeitschrift für angewandte Mathematik und Physik, 64 (2013), 223-251.
doi: 10.1007/s00033-012-0232-x. |
[15] |
E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences, 18, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-0713-9. |
[16] |
E. Isaacson and B. Temple, Convergence of the $2\times 2$ Godunov method for a general resonant nonlinear balance law, SIAM J. Appl. Math., 55 (1995), 625-640.
doi: 10.1137/S0036139992240711. |
[17] |
S. N. Kružhkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255. |
[18] |
P. G. Lefloch, Hyperbolic Systems of Conservation Laws, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2002.
doi: 10.1007/978-3-0348-8150-0. |
[19] |
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511791253. |
[20] |
M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[21] |
E. Y. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws, J. Hyperbolic Differ. Equ., 4 (2007), 729-770.
doi: 10.1142/S0219891607001343. |
[22] |
P. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |
[23] |
M. D. Rosini, Nonclassical interactions portrait in a macroscopic pedestrian flow model, J. Differential Equations, 246 (2009), 408-427.
doi: 10.1016/j.jde.2008.03.018. |
[24] |
A. Vasseur, Strong traces for solutions of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., 160 (2001), 181-193.
doi: 10.1007/s002050100157. |
[1] |
Wei Liu, Shiji Song, Ying Qiao, Han Zhao. The loss-averse newsvendor problem with random supply capacity. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1417-1429. doi: 10.3934/jimo.2016080 |
[2] |
Peter Hinow, Ami Radunskaya. Ergodicity and loss of capacity for a random family of concave maps. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2193-2210. doi: 10.3934/dcdsb.2016043 |
[3] |
Matthias Eller. Loss of derivatives for hyperbolic boundary problems with constant coefficients. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1347-1361. doi: 10.3934/dcdsb.2018154 |
[4] |
Wenyan Zhuo, Honglin Yang, Leopoldo Eduardo Cárdenas-Barrón, Hong Wan. Loss-averse supply chain decisions with a capital constrained retailer. Journal of Industrial and Management Optimization, 2021, 17 (2) : 711-732. doi: 10.3934/jimo.2019131 |
[5] |
Tong Li, Nitesh Mathur. Riemann problem for a non-strictly hyperbolic system in chemotaxis. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2173-2187. doi: 10.3934/dcdsb.2021128 |
[6] |
Thierry Goudon, Martin Parisot. Non--local macroscopic models based on Gaussian closures for the Spizer-Härm regime. Kinetic and Related Models, 2011, 4 (3) : 735-766. doi: 10.3934/krm.2011.4.735 |
[7] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[8] |
Priyanjana M. N. Dharmawardane. Decay property of regularity-loss type for quasi-linear hyperbolic systems of viscoelasticity. Conference Publications, 2013, 2013 (special) : 197-206. doi: 10.3934/proc.2013.2013.197 |
[9] |
Zhenhuan Yang, Wei Shen, Yiming Ying, Xiaoming Yuan. Stochastic AUC optimization with general loss. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4191-4212. doi: 10.3934/cpaa.2020188 |
[10] |
Anatoly Neishtadt. On stability loss delay for dynamical bifurcations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 897-909. doi: 10.3934/dcdss.2009.2.897 |
[11] |
Matilde Martínez, Shigenori Matsumoto, Alberto Verjovsky. Horocycle flows for laminations by hyperbolic Riemann surfaces and Hedlund's theorem. Journal of Modern Dynamics, 2016, 10: 113-134. doi: 10.3934/jmd.2016.10.113 |
[12] |
Qiuli Liu, Xiaolong Zou. A risk minimization problem for finite horizon semi-Markov decision processes with loss rates. Journal of Dynamics and Games, 2018, 5 (2) : 143-163. doi: 10.3934/jdg.2018009 |
[13] |
Wei Liu, Shiji Song, Ying Qiao, Han Zhao, Huachang Wang. The loss-averse newsvendor problem with quantity-oriented reference point under CVaR criterion. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2633-2650. doi: 10.3934/jimo.2021085 |
[14] |
Armen Shirikyan, Leonid Volevich. Qualitative properties of solutions for linear and nonlinear hyperbolic PDE's. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 517-542. doi: 10.3934/dcds.2004.10.517 |
[15] |
Lili Chang, Wei Gong, Guiquan Sun, Ningning Yan. PDE-constrained optimal control approach for the approximation of an inverse Cauchy problem. Inverse Problems and Imaging, 2015, 9 (3) : 791-814. doi: 10.3934/ipi.2015.9.791 |
[16] |
Oliver Kolb, Simone Göttlich, Paola Goatin. Capacity drop and traffic control for a second order traffic model. Networks and Heterogeneous Media, 2017, 12 (4) : 663-681. doi: 10.3934/nhm.2017027 |
[17] |
Philippe Pécol, Pierre Argoul, Stefano Dal Pont, Silvano Erlicher. The non-smooth view for contact dynamics by Michel Frémond extended to the modeling of crowd movements. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 547-565. doi: 10.3934/dcdss.2013.6.547 |
[18] |
Shuhua Wang, Zhenlong Chen, Baohuai Sheng. Convergence of online pairwise regression learning with quadratic loss. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4023-4054. doi: 10.3934/cpaa.2020178 |
[19] |
Kai Li, Yuqian Pan, Bohai Liu, Bayi Cheng. The setting and optimization of quick queue with customer loss. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1539-1553. doi: 10.3934/jimo.2019016 |
[20] |
Limin Wen, Xianyi Wu, Xiaobing Zhao. The credibility premiums under generalized weighted loss functions. Journal of Industrial and Management Optimization, 2009, 5 (4) : 893-910. doi: 10.3934/jimo.2009.5.893 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]