-
Previous Article
A hybrid model for traffic flow and crowd dynamics with random individual properties
- MBE Home
- This Issue
-
Next Article
Modelling with measures: Approximation of a mass-emitting object by a point source
A mixed system modeling two-directional pedestrian flows
1. | INRIA Sophia Antipolis - Méditerranée, EPI OPALE, 2004, route des Lucioles - BP 93, 06902 Sophia Antipolis Cedex |
2. | INRIA Sophia Antipolis - Méditerranée, 2004, route des Lucioles - BP 93, 06902 Sophia Antipolis Cedex, France |
References:
[1] |
J. B. Bell, J. A. Trangenstein and G. R. Shubin, Conservation laws of mixed type describing three-phase flow in porous media, SIAM J. Appl. Math., 46 (1986), 1000-1017.
doi: 10.1137/0146059. |
[2] |
S. Benzoni-Gavage and R. M. Colombo, An $n$-populations model for traffic flow, European J. Appl. Math., 14 (2003), 587-612.
doi: 10.1017/S0956792503005266. |
[3] |
S. Berres, R. Ruiz-Baier, H. Schwandt and E. M. Tory, An adaptive finite-volume method for a model of two-phase pedestrian flow, Netw. Heterog. Media, 6 (2011), 401-423.
doi: 10.3934/nhm.2011.6.401. |
[4] |
J. Bick and G. F. Newell, A continuum model for two-directional traffic flow, Q. Appl. Math., XVIII (1960), 191-204. |
[5] |
A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000. |
[6] |
S. Buchmüller and U. Weidmann, Parameters of Pedestrians, Pedestrian Traffic and Walking Facilities, Technical report, ETH Zürich, 2006. |
[7] |
F. Coquel and P. LeFloch, Convergence of finite difference schemes for conservation laws in several space dimensions: A general theory, SIAM J. Numer. Anal., 30 (1993), 675-700.
doi: 10.1137/0730033. |
[8] |
R. J. DiPerna, Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal., 88 (1985), 223-270.
doi: 10.1007/BF00752112. |
[9] |
R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, (2000), 713-1020. |
[10] |
A. D. Fitt, The numerical and analytical solution of ill-posed systems of conservation laws, Appl. Math. Modelling, 13 (1989), 618-631,
doi: 10.1016/0307-904X(89)90171-6. |
[11] |
U. S. Fjordholm, High-order Accurate Entropy Stable Numerical Schemes for Hyperbolic Conservation Laws, Ph.D thesis, ETH Zürich dissertation Nr. 21025, 2013. |
[12] |
U. S. Fjordholm, R. Käppeli, S. Mishra and E. Tadmor, Construction of approximate entropy measure valued solutions for hyperbolic systems of conservation laws,, , ().
|
[13] |
H. Frid and I.-S. Liu, Oscillation waves in Riemann problems inside elliptic regions for conservation laws of mixed type, Z. Angew. Math. Phys., 46 (1995), 913-931.
doi: 10.1007/BF00917877. |
[14] |
D. Helbing, P. Molnár, I. J. Farkas and K. Bolay, Self-organizing pedestrian movement, Environment and Planning B, 28 (2001), 361-383.
doi: 10.1068/b2697. |
[15] |
H. Holden, L. Holden and N. H. Risebro, Some qualitative properties of $2\times 2$ systems of conservation laws of mixed type, in Nonlinear Evolution Equations That Change Type, IMA Vol. Math. Appl., 27, Springer, New York, 1990, 67-78.
doi: 10.1007/978-1-4613-9049-7_5. |
[16] |
E. Isaacson, D. Marchesin, B. Plohr and B. Temple, The Riemann problem near a hyperbolic singularity: The classification of solutions of quadratic Riemann problems. I, SIAM J. Appl. Math., 48 (1988), 1009-1032.
doi: 10.1137/0148059. |
[17] |
B. L. Keyfitz, A geometric theory of conservation laws which change type, Z. Angew. Math. Mech., 75 (1995), 571-581.
doi: 10.1002/zamm.19950750802. |
[18] |
B. L. Keyfitz, Singular shocks: Retrospective and prospective, Confluentes Math., 3 (2011), 445-470.
doi: 10.1142/S1793744211000424. |
[19] |
P. Lax and B. Wendroff, Systems of conservation laws, Comm. Pure Appl. Math., 13 (1960), 217-237.
doi: 10.1002/cpa.3160130205. |
[20] |
T. P. Liu, The Riemann problem for general $2\times 2$ conservation laws, Trans. Amer. Math. Soc., 199 (1974), 89-112. |
[21] |
M. Moussaïd, E. G. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré, C. Appert-Rolland, P. Degond and G. Theraulaz, Traffic instabilities in self-organized pedestrian crowds, PLoS Comput. Biol., 8 (2012), e1002442. |
[22] |
H. B. Stewart and B. Wendroff, Two-phase flow: Models and methods, J. Comput. Phys., 56 (1984), 363-409.
doi: 10.1016/0021-9991(84)90103-7. |
[23] |
L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., 39, Pitman, Boston, Mass.-London, 1979, 136-212. |
[24] |
V. Vinod, Structural Stability of Riemann Solutions for a Multiple Kinematic Conservation Law Model that Changes Type, Ph.D Thesis, University of Houston, Houston, 1992. 68 pp. |
show all references
References:
[1] |
J. B. Bell, J. A. Trangenstein and G. R. Shubin, Conservation laws of mixed type describing three-phase flow in porous media, SIAM J. Appl. Math., 46 (1986), 1000-1017.
doi: 10.1137/0146059. |
[2] |
S. Benzoni-Gavage and R. M. Colombo, An $n$-populations model for traffic flow, European J. Appl. Math., 14 (2003), 587-612.
doi: 10.1017/S0956792503005266. |
[3] |
S. Berres, R. Ruiz-Baier, H. Schwandt and E. M. Tory, An adaptive finite-volume method for a model of two-phase pedestrian flow, Netw. Heterog. Media, 6 (2011), 401-423.
doi: 10.3934/nhm.2011.6.401. |
[4] |
J. Bick and G. F. Newell, A continuum model for two-directional traffic flow, Q. Appl. Math., XVIII (1960), 191-204. |
[5] |
A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000. |
[6] |
S. Buchmüller and U. Weidmann, Parameters of Pedestrians, Pedestrian Traffic and Walking Facilities, Technical report, ETH Zürich, 2006. |
[7] |
F. Coquel and P. LeFloch, Convergence of finite difference schemes for conservation laws in several space dimensions: A general theory, SIAM J. Numer. Anal., 30 (1993), 675-700.
doi: 10.1137/0730033. |
[8] |
R. J. DiPerna, Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal., 88 (1985), 223-270.
doi: 10.1007/BF00752112. |
[9] |
R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, (2000), 713-1020. |
[10] |
A. D. Fitt, The numerical and analytical solution of ill-posed systems of conservation laws, Appl. Math. Modelling, 13 (1989), 618-631,
doi: 10.1016/0307-904X(89)90171-6. |
[11] |
U. S. Fjordholm, High-order Accurate Entropy Stable Numerical Schemes for Hyperbolic Conservation Laws, Ph.D thesis, ETH Zürich dissertation Nr. 21025, 2013. |
[12] |
U. S. Fjordholm, R. Käppeli, S. Mishra and E. Tadmor, Construction of approximate entropy measure valued solutions for hyperbolic systems of conservation laws,, , ().
|
[13] |
H. Frid and I.-S. Liu, Oscillation waves in Riemann problems inside elliptic regions for conservation laws of mixed type, Z. Angew. Math. Phys., 46 (1995), 913-931.
doi: 10.1007/BF00917877. |
[14] |
D. Helbing, P. Molnár, I. J. Farkas and K. Bolay, Self-organizing pedestrian movement, Environment and Planning B, 28 (2001), 361-383.
doi: 10.1068/b2697. |
[15] |
H. Holden, L. Holden and N. H. Risebro, Some qualitative properties of $2\times 2$ systems of conservation laws of mixed type, in Nonlinear Evolution Equations That Change Type, IMA Vol. Math. Appl., 27, Springer, New York, 1990, 67-78.
doi: 10.1007/978-1-4613-9049-7_5. |
[16] |
E. Isaacson, D. Marchesin, B. Plohr and B. Temple, The Riemann problem near a hyperbolic singularity: The classification of solutions of quadratic Riemann problems. I, SIAM J. Appl. Math., 48 (1988), 1009-1032.
doi: 10.1137/0148059. |
[17] |
B. L. Keyfitz, A geometric theory of conservation laws which change type, Z. Angew. Math. Mech., 75 (1995), 571-581.
doi: 10.1002/zamm.19950750802. |
[18] |
B. L. Keyfitz, Singular shocks: Retrospective and prospective, Confluentes Math., 3 (2011), 445-470.
doi: 10.1142/S1793744211000424. |
[19] |
P. Lax and B. Wendroff, Systems of conservation laws, Comm. Pure Appl. Math., 13 (1960), 217-237.
doi: 10.1002/cpa.3160130205. |
[20] |
T. P. Liu, The Riemann problem for general $2\times 2$ conservation laws, Trans. Amer. Math. Soc., 199 (1974), 89-112. |
[21] |
M. Moussaïd, E. G. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré, C. Appert-Rolland, P. Degond and G. Theraulaz, Traffic instabilities in self-organized pedestrian crowds, PLoS Comput. Biol., 8 (2012), e1002442. |
[22] |
H. B. Stewart and B. Wendroff, Two-phase flow: Models and methods, J. Comput. Phys., 56 (1984), 363-409.
doi: 10.1016/0021-9991(84)90103-7. |
[23] |
L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., 39, Pitman, Boston, Mass.-London, 1979, 136-212. |
[24] |
V. Vinod, Structural Stability of Riemann Solutions for a Multiple Kinematic Conservation Law Model that Changes Type, Ph.D Thesis, University of Houston, Houston, 1992. 68 pp. |
[1] |
N. V. Chemetov. Nonlinear hyperbolic-elliptic systems in the bounded domain. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1079-1096. doi: 10.3934/cpaa.2011.10.1079 |
[2] |
Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143 |
[3] |
Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673 |
[4] |
Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011 |
[5] |
Stefano Bianchini. A note on singular limits to hyperbolic systems of conservation laws. Communications on Pure and Applied Analysis, 2003, 2 (1) : 51-64. doi: 10.3934/cpaa.2003.2.51 |
[6] |
Fumioki Asakura, Andrea Corli. The path decomposition technique for systems of hyperbolic conservation laws. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 15-32. doi: 10.3934/dcdss.2016.9.15 |
[7] |
Steinar Evje, Kenneth H. Karlsen. Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1 (4) : 639-673. doi: 10.3934/nhm.2006.1.639 |
[8] |
Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control and Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121 |
[9] |
Yu Zhang, Yanyan Zhang. Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1523-1545. doi: 10.3934/cpaa.2019073 |
[10] |
Tatsien Li, Libin Wang. Global exact shock reconstruction for quasilinear hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 597-609. doi: 10.3934/dcds.2006.15.597 |
[11] |
G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Time-dependent systems of generalized Young measures. Networks and Heterogeneous Media, 2007, 2 (1) : 1-36. doi: 10.3934/nhm.2007.2.1 |
[12] |
Pierre Degond, Cécile Appert-Rolland, Julien Pettré, Guy Theraulaz. Vision-based macroscopic pedestrian models. Kinetic and Related Models, 2013, 6 (4) : 809-839. doi: 10.3934/krm.2013.6.809 |
[13] |
Weishi Liu. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 871-884. doi: 10.3934/dcds.2004.10.871 |
[14] |
Paolo Baiti, Helge Kristian Jenssen. Blowup in $\mathbf{L^{\infty}}$ for a class of genuinely nonlinear hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 837-853. doi: 10.3934/dcds.2001.7.837 |
[15] |
Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks and Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393 |
[16] |
Dmitry V. Zenkov. Linear conservation laws of nonholonomic systems with symmetry. Conference Publications, 2003, 2003 (Special) : 967-976. doi: 10.3934/proc.2003.2003.967 |
[17] |
Valérie Dos Santos, Bernhard Maschke, Yann Le Gorrec. A Hamiltonian perspective to the stabilization of systems of two conservation laws. Networks and Heterogeneous Media, 2009, 4 (2) : 249-266. doi: 10.3934/nhm.2009.4.249 |
[18] |
Dirk Hartmann, Isabella von Sivers. Structured first order conservation models for pedestrian dynamics. Networks and Heterogeneous Media, 2013, 8 (4) : 985-1007. doi: 10.3934/nhm.2013.8.985 |
[19] |
Stefano Luzzatto, Marks Ruziboev. Young towers for product systems. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1465-1491. doi: 10.3934/dcds.2016.36.1465 |
[20] |
Christophe Chalons, Paola Goatin, Nicolas Seguin. General constrained conservation laws. Application to pedestrian flow modeling. Networks and Heterogeneous Media, 2013, 8 (2) : 433-463. doi: 10.3934/nhm.2013.8.433 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]