Citation: |
[1] |
P. Amorim, R. M. Colombo and A. Teixeira, On the numerical integration of scalar conservation laws, preprint, 2013. |
[2] |
A. Aw and M. Rascle, Resurrection of "second order'' models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938 (electronic).doi: 10.1137/S0036139997332099. |
[3] |
N. Bellomo and C. Dogbé, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Models Methods Appl. Sci., 18 (2008), 1317-1345.doi: 10.1142/S0218202508003054. |
[4] |
N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Review, 53 (2011), 409-463.doi: 10.1137/090746677. |
[5] |
R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of non-local models for pedestrian traffic, Mathematical Models and Methods in the Applied Sciences, 22 (2012), 1150023, 34 p.doi: 10.1142/S0218202511500230. |
[6] |
R. M. Colombo and N. Pogodaev, Confinement strategies in a model for the interaction between individuals and a continuum, SIAM J. Appl. Dyn. Syst., 11 (2012), 741-770.doi: 10.1137/110854321. |
[7] |
M. Crandall and A. Majda, The method of fractional steps for conservation laws, Numer. Math., 34 (1980), 285-314.doi: 10.1007/BF01396704. |
[8] |
E. Cristiani, B. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics, Multiscale Model. Simul., 9 (2011), 155-182.doi: 10.1137/100797515. |
[9] |
C. F. Daganzo, Requiem for second-order fluid approximations to traffic flow, Transp. Res. B, 29 (1995), 277-286.doi: 10.1016/0191-2615(95)00007-Z. |
[10] |
G. Dal Maso, P. G. Lefloch and F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. (9), 74 (1995), 483-548. |
[11] |
D. Helbing, Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models, The European Physical Journal B, 69 (2009), 539-548.doi: 10.1140/epjb/e2009-00192-5. |
[12] |
D. Helbing and A. F. Johansson, On the controversy around Daganzo's requiem for and Aw-Rascle's resurrection of second-order traffic flow models, Modelling and Optimisation of Flows on Networks, (2013), 271-302.doi: 10.1007/978-3-642-32160-3_4. |
[13] |
R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, 36 (2002), 507-535.doi: 10.1016/S0191-2615(01)00015-7. |
[14] |
S. N. Kružhkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255. |
[15] |
M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.doi: 10.1098/rspa.1955.0089. |
[16] |
S. Mishra and C. Schwab, Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data, Math. Comp., 81 (2012), 1979-2018.doi: 10.1090/S0025-5718-2012-02574-9. |
[17] |
P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.doi: 10.1287/opre.4.1.42. |
[18] |
M. Sabry Hassouna and A. A. Farag, Multistencils fast marching methods: A highly accurate solution to the eikonal equation on cartesian domains, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (2007), 1563-1574.doi: 10.1109/TPAMI.2007.1154. |
[19] |
Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.-i. Tadaki and S. Yukawa, Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam, New Journal of Physics, 10 (2008), 033001.doi: 10.1088/1367-2630/10/3/033001. |
[20] |
S.-i. Tadaki, M. Kikuchi, F. Minoru, A. Nakayama, K. Nishinari, A. Shibata, Y. Sugiyama, T. Yosida and S. Yukawa, Phase transition in traffic jam experiment on a circuit, New Journal of Physics, 15 (2013), 103034.doi: 10.1088/1367-2630/15/10/103034. |