-
Previous Article
A mathematical model of HTLV-I infection with two time delays
- MBE Home
- This Issue
- Next Article
An SIRS model with differential susceptibility and infectivity on uncorrelated networks
1. | Department of Mathematics, North University of China, Taiyuan, Shanxi 030051, China |
2. | Department of Applied Mathematics, Yuncheng University, Yuncheng, Shanxi 044000, China |
References:
[1] |
M. Artzrouni, Transmission probabilities and reproductive numbers for sexually transmitted infections with variable infectivity: Application to the spread of HIV between low- and high-activity populations, Mathematical Population Studies, 16 (2009), 266-287.
doi: 10.1080/08898480903251538. |
[2] |
A.-L. Barabási and R. Alberta, Emergence of scaling in random networks, Science, 286 (1999), 509-512.
doi: 10.1126/science.286.5439.509. |
[3] |
B. Bonzi, A. A. Fall, A. Iggidr and G. Sallet, Stability of differential susceptibility and infectivity epidemic models, J. Math. Biol., 62 (2011), 39-64.
doi: 10.1007/s00285-010-0327-y. |
[4] |
S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes, Critical phenomena in complex networks, Rev. Mod. Phys., 80 (2008), 1275-1335.
doi: 10.1103/RevModPhys.80.1275. |
[5] |
X. Fu, M. Small, D. M. Walker and H. Zhang, Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization, Phys. Rev. E, 77 (2008), 036113, 8pp.
doi: 10.1103/PhysRevE.77.036113. |
[6] |
W.-P. Guo, X. Li and X.-F. Wang, Epidemics and immunization on Euclidean distance preferred small-world networks, Physica A, 380 (2007), 684-690.
doi: 10.1016/j.physa.2007.03.007. |
[7] |
J. M. Hyman and J. Li, Differential susceptibility epidemic models, J. Math. Biol., 50 (2005), 626-644.
doi: 10.1007/s00285-004-0301-7. |
[8] |
J. M. Hyman and J. Li, Differential susceptibility and infectivity epidemic models, Math. Biosci. Engrg., 3 (2006), 89-100.
doi: 10.3934/mbe.2006.3.89. |
[9] |
J. M. Hyman and J. Li, Epidemic models with differential susceptibility and staged progression and their dynamics, Math. Biosci. Engrg., 6 (2009), 321-332.
doi: 10.3934/mbe.2009.6.321. |
[10] |
A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28 (1976), 221-236.
doi: 10.1016/0025-5564(76)90125-5. |
[11] |
P. De Leenheer and H. L. Smith, Virus dynamics: A global analysis, SIAM J. Appl. Math., 63 (2003), 1313-1327.
doi: 10.1137/S0036139902406905. |
[12] |
F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley and Y. Åberg, The web of human sexual contacts, Nature, 411 (2001), 907-908.
doi: 10.1038/35082140. |
[13] |
J. Lou and T. Ruggeri, The dynamics of spreading and immune strategies of sexually transmitted diseases on scale-free network, J. Math. Anal. Appl., 365 (2010), 210-219.
doi: 10.1016/j.jmaa.2009.10.044. |
[14] |
Z. Ma, J. Liu and J. Li, Stability analysis for differential infectivity epidemic models, Nonlinear Anal.: RWA, 4 (2003), 841-856.
doi: 10.1016/S1468-1218(03)00019-1. |
[15] |
J. D. May, Mathematical Biology I: An Introduction, 3rd Ed., Springer-Verlag, New York, 2002. |
[16] |
R. M. May and A. L. Lloyd, Infection dynamics on scale-free networks, Phys. Rev. E, 64 (2001), 066112.
doi: 10.1103/PhysRevE.64.066112. |
[17] |
M. E. J. Newman, The structure and function of complex networks, SIAM Rev., 45 (2003), 167-256.
doi: 10.1137/S003614450342480. |
[18] |
R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86 (2001), 3200-3203.
doi: 10.1103/PhysRevLett.86.3200. |
[19] |
R. Pastor-Satorras and A. Vespignani, Epidemic dynamics in finite size scale-free networks, Phys. Rev. E, 65 (2002), 035108.
doi: 10.1103/PhysRevE.65.035108. |
[20] |
R. Pastor-Satorras and A. Vespignani, Immunization of complex networks, Phys. Rev. E, 65 (2002), 036104.
doi: 10.1103/PhysRevE.65.036104. |
[21] |
W. J. Reed, A stochastic model for the spread of a sexually transmitted disease which results in a scale-free network, Math. Biosci., 201 (2006), 3-14.
doi: 10.1016/j.mbs.2005.12.016. |
[22] |
A. Schneeberger, C. H. Mercer, S. A. J. Gregson, N. M. Ferguson, C. A. Nyamukapa, R. M. Anderson, A. M. Johmson and G. P. Garnett, Scale-free networks and sexually transmitted diseases: A description of observed patterns of sexual contacts in Britain and Zimbabwe, Sex. Transm. Dis., 31 (2004), 380-387.
doi: 10.1097/00007435-200406000-00012. |
[23] |
A. Smed-Sörensen et al., Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and Plasmacytoid dendritic cells, J. Virology, 79 (2005), 8861-8869. |
[24] |
N. Sugimine and K. Aihara, Stability of an equilibrium state in a multiinfectious-type SIS model on a truncated network, Artif. Life Robotics, 11 (2007), 157-161.
doi: 10.1007/s10015-007-0421-4. |
[25] |
H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model), SIAM J. Math. Anal., 24 (1993), 407-435.
doi: 10.1137/0524026. |
[26] |
R. Yang et al., Epidemic spreading on heterogeneous networks with identical infectivity, Phys. Lett. A, 364 (2007), 189-193. |
[27] |
H. Zhang, L. Chen and J. J. Nieto, A delayed epidemic model with stage-structure and pulses for pest management strategy, Nonlinear Anal. Real World Appl., 9 (2008), 1714-1726.
doi: 10.1016/j.nonrwa.2007.05.004. |
[28] |
Z. Zhang and J. Peng, A SIRS epidemic model with infection-age dependence, J. Math. Anal. Appl., 331 (2007), 1396-1414.
doi: 10.1016/j.jmaa.2006.09.061. |
[29] |
Z. Zhang, J. Peng and J. Zhang, Analysis of a bacteria-immunity model with delay quorum sensing, J. Math. Anal. Appl., 340 (2008), 102-115.
doi: 10.1016/j.jmaa.2007.08.027. |
[30] |
S. Zou, J. Wu and Y. Chen, Multiple epidemic waves in delayed susceptible-infected-recovered models on complex networks, Phys. Rev. E, 83 (2011), 056121.
doi: 10.1103/PhysRevE.83.056121. |
show all references
References:
[1] |
M. Artzrouni, Transmission probabilities and reproductive numbers for sexually transmitted infections with variable infectivity: Application to the spread of HIV between low- and high-activity populations, Mathematical Population Studies, 16 (2009), 266-287.
doi: 10.1080/08898480903251538. |
[2] |
A.-L. Barabási and R. Alberta, Emergence of scaling in random networks, Science, 286 (1999), 509-512.
doi: 10.1126/science.286.5439.509. |
[3] |
B. Bonzi, A. A. Fall, A. Iggidr and G. Sallet, Stability of differential susceptibility and infectivity epidemic models, J. Math. Biol., 62 (2011), 39-64.
doi: 10.1007/s00285-010-0327-y. |
[4] |
S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes, Critical phenomena in complex networks, Rev. Mod. Phys., 80 (2008), 1275-1335.
doi: 10.1103/RevModPhys.80.1275. |
[5] |
X. Fu, M. Small, D. M. Walker and H. Zhang, Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization, Phys. Rev. E, 77 (2008), 036113, 8pp.
doi: 10.1103/PhysRevE.77.036113. |
[6] |
W.-P. Guo, X. Li and X.-F. Wang, Epidemics and immunization on Euclidean distance preferred small-world networks, Physica A, 380 (2007), 684-690.
doi: 10.1016/j.physa.2007.03.007. |
[7] |
J. M. Hyman and J. Li, Differential susceptibility epidemic models, J. Math. Biol., 50 (2005), 626-644.
doi: 10.1007/s00285-004-0301-7. |
[8] |
J. M. Hyman and J. Li, Differential susceptibility and infectivity epidemic models, Math. Biosci. Engrg., 3 (2006), 89-100.
doi: 10.3934/mbe.2006.3.89. |
[9] |
J. M. Hyman and J. Li, Epidemic models with differential susceptibility and staged progression and their dynamics, Math. Biosci. Engrg., 6 (2009), 321-332.
doi: 10.3934/mbe.2009.6.321. |
[10] |
A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28 (1976), 221-236.
doi: 10.1016/0025-5564(76)90125-5. |
[11] |
P. De Leenheer and H. L. Smith, Virus dynamics: A global analysis, SIAM J. Appl. Math., 63 (2003), 1313-1327.
doi: 10.1137/S0036139902406905. |
[12] |
F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley and Y. Åberg, The web of human sexual contacts, Nature, 411 (2001), 907-908.
doi: 10.1038/35082140. |
[13] |
J. Lou and T. Ruggeri, The dynamics of spreading and immune strategies of sexually transmitted diseases on scale-free network, J. Math. Anal. Appl., 365 (2010), 210-219.
doi: 10.1016/j.jmaa.2009.10.044. |
[14] |
Z. Ma, J. Liu and J. Li, Stability analysis for differential infectivity epidemic models, Nonlinear Anal.: RWA, 4 (2003), 841-856.
doi: 10.1016/S1468-1218(03)00019-1. |
[15] |
J. D. May, Mathematical Biology I: An Introduction, 3rd Ed., Springer-Verlag, New York, 2002. |
[16] |
R. M. May and A. L. Lloyd, Infection dynamics on scale-free networks, Phys. Rev. E, 64 (2001), 066112.
doi: 10.1103/PhysRevE.64.066112. |
[17] |
M. E. J. Newman, The structure and function of complex networks, SIAM Rev., 45 (2003), 167-256.
doi: 10.1137/S003614450342480. |
[18] |
R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86 (2001), 3200-3203.
doi: 10.1103/PhysRevLett.86.3200. |
[19] |
R. Pastor-Satorras and A. Vespignani, Epidemic dynamics in finite size scale-free networks, Phys. Rev. E, 65 (2002), 035108.
doi: 10.1103/PhysRevE.65.035108. |
[20] |
R. Pastor-Satorras and A. Vespignani, Immunization of complex networks, Phys. Rev. E, 65 (2002), 036104.
doi: 10.1103/PhysRevE.65.036104. |
[21] |
W. J. Reed, A stochastic model for the spread of a sexually transmitted disease which results in a scale-free network, Math. Biosci., 201 (2006), 3-14.
doi: 10.1016/j.mbs.2005.12.016. |
[22] |
A. Schneeberger, C. H. Mercer, S. A. J. Gregson, N. M. Ferguson, C. A. Nyamukapa, R. M. Anderson, A. M. Johmson and G. P. Garnett, Scale-free networks and sexually transmitted diseases: A description of observed patterns of sexual contacts in Britain and Zimbabwe, Sex. Transm. Dis., 31 (2004), 380-387.
doi: 10.1097/00007435-200406000-00012. |
[23] |
A. Smed-Sörensen et al., Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and Plasmacytoid dendritic cells, J. Virology, 79 (2005), 8861-8869. |
[24] |
N. Sugimine and K. Aihara, Stability of an equilibrium state in a multiinfectious-type SIS model on a truncated network, Artif. Life Robotics, 11 (2007), 157-161.
doi: 10.1007/s10015-007-0421-4. |
[25] |
H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model), SIAM J. Math. Anal., 24 (1993), 407-435.
doi: 10.1137/0524026. |
[26] |
R. Yang et al., Epidemic spreading on heterogeneous networks with identical infectivity, Phys. Lett. A, 364 (2007), 189-193. |
[27] |
H. Zhang, L. Chen and J. J. Nieto, A delayed epidemic model with stage-structure and pulses for pest management strategy, Nonlinear Anal. Real World Appl., 9 (2008), 1714-1726.
doi: 10.1016/j.nonrwa.2007.05.004. |
[28] |
Z. Zhang and J. Peng, A SIRS epidemic model with infection-age dependence, J. Math. Anal. Appl., 331 (2007), 1396-1414.
doi: 10.1016/j.jmaa.2006.09.061. |
[29] |
Z. Zhang, J. Peng and J. Zhang, Analysis of a bacteria-immunity model with delay quorum sensing, J. Math. Anal. Appl., 340 (2008), 102-115.
doi: 10.1016/j.jmaa.2007.08.027. |
[30] |
S. Zou, J. Wu and Y. Chen, Multiple epidemic waves in delayed susceptible-infected-recovered models on complex networks, Phys. Rev. E, 83 (2011), 056121.
doi: 10.1103/PhysRevE.83.056121. |
[1] |
Daniel Maxin, Fabio Augusto Milner. The effect of nonreproductive groups on persistent sexually transmitted diseases. Mathematical Biosciences & Engineering, 2007, 4 (3) : 505-522. doi: 10.3934/mbe.2007.4.505 |
[2] |
Carlos Castillo-Chavez, Bingtuan Li. Spatial spread of sexually transmitted diseases within susceptible populations at demographic steady state. Mathematical Biosciences & Engineering, 2008, 5 (4) : 713-727. doi: 10.3934/mbe.2008.5.713 |
[3] |
Jane M. Heffernan, Yijun Lou, Marc Steben, Jianhong Wu. Cost-effectiveness evaluation of gender-based vaccination programs against sexually transmitted infections. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 447-466. doi: 10.3934/dcdsb.2014.19.447 |
[4] |
Wen Jin, Horst R. Thieme. An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 447-470. doi: 10.3934/dcdsb.2016.21.447 |
[5] |
Shuping Li, Zhen Jin. Impacts of cluster on network topology structure and epidemic spreading. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3749-3770. doi: 10.3934/dcdsb.2017187 |
[6] |
Bailey Kacsmar, Douglas R. Stinson. A network reliability approach to the analysis of combinatorial repairable threshold schemes. Advances in Mathematics of Communications, 2019, 13 (4) : 601-612. doi: 10.3934/amc.2019037 |
[7] |
Zhikun She, Xin Jiang. Threshold dynamics of a general delayed within-host viral infection model with humoral immunity and two modes of virus transmission. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3835-3861. doi: 10.3934/dcdsb.2020259 |
[8] |
Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483-498. doi: 10.3934/mbe.2013.10.483 |
[9] |
Huizi Yang, Zhanwen Yang, Shengqiang Liu. Numerical threshold of linearly implicit Euler method for nonlinear infection-age SIR models. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022067 |
[10] |
Cheng-Ta Yeh, Yi-Kuei Lin. Component allocation cost minimization for a multistate computer network subject to a reliability threshold using tabu search. Journal of Industrial and Management Optimization, 2016, 12 (1) : 141-167. doi: 10.3934/jimo.2016.12.141 |
[11] |
Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565 |
[12] |
Telmo Peixe. Permanence in polymatrix replicators. Journal of Dynamics and Games, 2021, 8 (1) : 21-34. doi: 10.3934/jdg.2020032 |
[13] |
Jing-An Cui, Xinyu Song. Permanence of predator-prey system with stage structure. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 547-554. doi: 10.3934/dcdsb.2004.4.547 |
[14] |
Longye Wang, Gaoyuan Zhang, Hong Wen, Xiaoli Zeng. An asymmetric ZCZ sequence set with inter-subset uncorrelated property and flexible ZCZ length. Advances in Mathematics of Communications, 2018, 12 (3) : 541-552. doi: 10.3934/amc.2018032 |
[15] |
Hans F. Weinberger, Xiao-Qiang Zhao. An extension of the formula for spreading speeds. Mathematical Biosciences & Engineering, 2010, 7 (1) : 187-194. doi: 10.3934/mbe.2010.7.187 |
[16] |
Mohammed Mesk, Ali Moussaoui. On an upper bound for the spreading speed. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3897-3912. doi: 10.3934/dcdsb.2021210 |
[17] |
Mei Li, Zhigui Lin. The spreading fronts in a mutualistic model with advection. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2089-2105. doi: 10.3934/dcdsb.2015.20.2089 |
[18] |
Julián López-Gómez. On the structure of the permanence region for competing species models with general diffusivities and transport effects. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 525-542. doi: 10.3934/dcds.1996.2.525 |
[19] |
Suqing Lin, Zhengyi Lu. Permanence for two-species Lotka-Volterra systems with delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 137-144. doi: 10.3934/mbe.2006.3.137 |
[20] |
Hongfu Yang, Xiaoyue Li, George Yin. Permanence and ergodicity of stochastic Gilpin-Ayala population model with regime switching. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3743-3766. doi: 10.3934/dcdsb.2016119 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]