2015, 12(3): 503-523. doi: 10.3934/mbe.2015.12.503

Optimality and stability of symmetric evolutionary games with applications in genetic selection

1. 

Department of Mathematics, Iowa State University, Ames, IA 50011, United States, United States, United States, United States

2. 

Department of Statistics, Iowa State University, Ames, IA 50011, United States

Received  September 2014 Revised  November 2014 Published  January 2015

Symmetric evolutionary games, i.e., evolutionary games with symmetric fitness matrices, have important applications in population genetics, where they can be used to model for example the selection and evolution of the genotypes of a given population. In this paper, we review the theory for obtaining optimal and stable strategies for symmetric evolutionary games, and provide some new proofs and computational methods. In particular, we review the relationship between the symmetric evolutionary game and the generalized knapsack problem, and discuss the first and second order necessary and sufficient conditions that can be derived from this relationship for testing the optimality and stability of the strategies. Some of the conditions are given in different forms from those in previous work and can be verified more efficiently. We also derive more efficient computational methods for the evaluation of the conditions than conventional approaches. We demonstrate how these conditions can be applied to justifying the strategies and their stabilities for a special class of genetic selection games including some in the study of genetic disorders.
Citation: Yuanyuan Huang, Yiping Hao, Min Wang, Wen Zhou, Zhijun Wu. Optimality and stability of symmetric evolutionary games with applications in genetic selection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 503-523. doi: 10.3934/mbe.2015.12.503
References:
[1]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, 1979.

[2]

I. Bomze, Regularity vs. degeneracy in dynamics, games, and optimization: A unified approach to different aspects, SIAM Review, 44 (2002), 394-414. doi: 10.1137/S00361445003756.

[3]

J. M. Borwein, Necessary and sufficient conditions for quadratic minimality, Numer. Funct. Anal. Optim., 5 (1982), 127-140. doi: 10.1080/01630568208816135.

[4]

S. Boyd and L. Vandeberghe, Convex Optimization, Cambridge University Press, 2004. doi: 10.1017/CBO9780511804441.

[5]

N. A. Campbell, J. B. Reece, L. A. Urry, M. L. Cain, S. A. Wasserman, P. V. Minorsky and R. B. Jackson, Biology, $8^{th}$ edition, Pearson Education Inc., 2008.

[6]

W. J. Ewens, Mathematical Population Genetics, Springer-Verlag, New York, 2004.

[7]

R. A. Fisher, The Genetic Theory of Natural Selection, Clarendon Press, Oxford, 1999.

[8]

G. H. Hardy, Mendelian proportions in a mixed population, Zeitschrift für Induktive Abstammungs- und Vererbungslehre, 1 (1908), p395. doi: 10.1007/BF01990610.

[9]

J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, 1998. doi: 10.1017/CBO9781139173179.

[10]

J. Maynard Smith and G. R. Price, The logic of animal conflict, Nature, 246 (1973), 15-18. doi: 10.1038/246015a0.

[11]

T. Motzkin and E. Straus, Maxima for graphs and a new proof of a theorem of Turán, Canadian J. Math., 17 (1965), 533-540. doi: 10.4153/CJM-1965-053-6.

[12]

K. G. Murty and S. N. Kabadi, Some NP-complete problems in quadratic and linear programming, Math. Programming, 39 (1987), 117-129. doi: 10.1007/BF02592948.

[13]

J. Nash, Equilibrium points in $n$-person games, Proceedings of the National Academy of Sciences, 36 (1950), 48-49. doi: 10.1073/pnas.36.1.48.

[14]

J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, New York, 2006.

[15]

P. Pardalos, Y. Ye and C. Han, Algorithms for the solution of quadratic knapsack problems, Linear Algebra and Its Applications, 152 (1991), 69-91. doi: 10.1016/0024-3795(91)90267-Z.

[16]

W. H. Sandholm, Population Games and Evolutionary Dynamics, The MIT Press, 2010.

[17]

A. R. Templeton, Population Genetics and Microevolutionary Theory, John Wiley & Sons Inc., 2006. doi: 10.1002/0470047356.

[18]

L. N. Trefethen and D. Bau III, Numerical Linear Algebra, SIAM, 1997.

[19]

J. W. Weibull, Evolutionary Game Theory, The MIT Press, 1995.

[20]

W. Weinberg, Aber den nachweis der vererbung beim menschen, Jahreshefte des Vereins fur vaterlandische Naturkunde in Wurttemberg, 64 (1908), 368-382.

show all references

References:
[1]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, 1979.

[2]

I. Bomze, Regularity vs. degeneracy in dynamics, games, and optimization: A unified approach to different aspects, SIAM Review, 44 (2002), 394-414. doi: 10.1137/S00361445003756.

[3]

J. M. Borwein, Necessary and sufficient conditions for quadratic minimality, Numer. Funct. Anal. Optim., 5 (1982), 127-140. doi: 10.1080/01630568208816135.

[4]

S. Boyd and L. Vandeberghe, Convex Optimization, Cambridge University Press, 2004. doi: 10.1017/CBO9780511804441.

[5]

N. A. Campbell, J. B. Reece, L. A. Urry, M. L. Cain, S. A. Wasserman, P. V. Minorsky and R. B. Jackson, Biology, $8^{th}$ edition, Pearson Education Inc., 2008.

[6]

W. J. Ewens, Mathematical Population Genetics, Springer-Verlag, New York, 2004.

[7]

R. A. Fisher, The Genetic Theory of Natural Selection, Clarendon Press, Oxford, 1999.

[8]

G. H. Hardy, Mendelian proportions in a mixed population, Zeitschrift für Induktive Abstammungs- und Vererbungslehre, 1 (1908), p395. doi: 10.1007/BF01990610.

[9]

J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, 1998. doi: 10.1017/CBO9781139173179.

[10]

J. Maynard Smith and G. R. Price, The logic of animal conflict, Nature, 246 (1973), 15-18. doi: 10.1038/246015a0.

[11]

T. Motzkin and E. Straus, Maxima for graphs and a new proof of a theorem of Turán, Canadian J. Math., 17 (1965), 533-540. doi: 10.4153/CJM-1965-053-6.

[12]

K. G. Murty and S. N. Kabadi, Some NP-complete problems in quadratic and linear programming, Math. Programming, 39 (1987), 117-129. doi: 10.1007/BF02592948.

[13]

J. Nash, Equilibrium points in $n$-person games, Proceedings of the National Academy of Sciences, 36 (1950), 48-49. doi: 10.1073/pnas.36.1.48.

[14]

J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, New York, 2006.

[15]

P. Pardalos, Y. Ye and C. Han, Algorithms for the solution of quadratic knapsack problems, Linear Algebra and Its Applications, 152 (1991), 69-91. doi: 10.1016/0024-3795(91)90267-Z.

[16]

W. H. Sandholm, Population Games and Evolutionary Dynamics, The MIT Press, 2010.

[17]

A. R. Templeton, Population Genetics and Microevolutionary Theory, John Wiley & Sons Inc., 2006. doi: 10.1002/0470047356.

[18]

L. N. Trefethen and D. Bau III, Numerical Linear Algebra, SIAM, 1997.

[19]

J. W. Weibull, Evolutionary Game Theory, The MIT Press, 1995.

[20]

W. Weinberg, Aber den nachweis der vererbung beim menschen, Jahreshefte des Vereins fur vaterlandische Naturkunde in Wurttemberg, 64 (1908), 368-382.

[1]

Hassan Najafi Alishah, Pedro Duarte. Hamiltonian evolutionary games. Journal of Dynamics and Games, 2015, 2 (1) : 33-49. doi: 10.3934/jdg.2015.2.33

[2]

Andrzej Swierniak, Michal Krzeslak. Application of evolutionary games to modeling carcinogenesis. Mathematical Biosciences & Engineering, 2013, 10 (3) : 873-911. doi: 10.3934/mbe.2013.10.873

[3]

Aradhana Narang, A. J. Shaiju. Neighborhood strong superiority and evolutionary stability of polymorphic profiles in asymmetric games. Journal of Dynamics and Games, 2022, 9 (3) : 253-266. doi: 10.3934/jdg.2022012

[4]

Alexey Cheskidov, Landon Kavlie. Pullback attractors for generalized evolutionary systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 749-779. doi: 10.3934/dcdsb.2015.20.749

[5]

Jinyuan Zhang, Aimin Zhou, Guixu Zhang, Hu Zhang. A clustering based mate selection for evolutionary optimization. Big Data & Information Analytics, 2017, 2 (1) : 77-85. doi: 10.3934/bdia.2017010

[6]

Jeremias Epperlein, Vladimír Švígler. On arbitrarily long periodic orbits of evolutionary games on graphs. Discrete and Continuous Dynamical Systems - B, 2018, 23 (5) : 1895-1915. doi: 10.3934/dcdsb.2018187

[7]

Jim M. Cushing. The evolutionary dynamics of a population model with a strong Allee effect. Mathematical Biosciences & Engineering, 2015, 12 (4) : 643-660. doi: 10.3934/mbe.2015.12.643

[8]

Christopher Griffin, James Fan. Control problems with vanishing Lie Bracket arising from complete odd circulant evolutionary games. Journal of Dynamics and Games, 2022, 9 (2) : 165-189. doi: 10.3934/jdg.2022002

[9]

Jeremias Epperlein, Stefan Siegmund, Petr Stehlík, Vladimír  Švígler. Coexistence equilibria of evolutionary games on graphs under deterministic imitation dynamics. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 803-813. doi: 10.3934/dcdsb.2016.21.803

[10]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3419-3440. doi: 10.3934/dcdss.2020426

[11]

John D. Nagy. The Ecology and Evolutionary Biology of Cancer: A Review of Mathematical Models of Necrosis and Tumor Cell Diversity. Mathematical Biosciences & Engineering, 2005, 2 (2) : 381-418. doi: 10.3934/mbe.2005.2.381

[12]

Matthieu Alfaro, Pierre Gabriel, Otared Kavian. Confining integro-differential equations originating from evolutionary biology: Ground states and long time dynamics. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022120

[13]

William H. Sandholm. Local stability of strict equilibria under evolutionary game dynamics. Journal of Dynamics and Games, 2014, 1 (3) : 485-495. doi: 10.3934/jdg.2014.1.485

[14]

Adriel Cheng, Cheng-Chew Lim. Optimizing system-on-chip verifications with multi-objective genetic evolutionary algorithms. Journal of Industrial and Management Optimization, 2014, 10 (2) : 383-396. doi: 10.3934/jimo.2014.10.383

[15]

Adrian Korban, Serap Şahinkaya, Deniz Ustun. A novel genetic search scheme based on nature-inspired evolutionary algorithms for binary self-dual codes. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022033

[16]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial and Management Optimization, 2022, 18 (1) : 593-611. doi: 10.3934/jimo.2020170

[17]

Shui-Nee Chow, Kening Lu, Yun-Qiu Shen. Normal forms for quasiperiodic evolutionary equations. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 65-94. doi: 10.3934/dcds.1996.2.65

[18]

Reinhard Bürger. A survey of migration-selection models in population genetics. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 883-959. doi: 10.3934/dcdsb.2014.19.883

[19]

Jiahui Chen, Rundong Zhao, Yiying Tong, Guo-Wei Wei. Evolutionary de Rham-Hodge method. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3785-3821. doi: 10.3934/dcdsb.2020257

[20]

Minette Herrera, Aaron Miller, Joel Nishimura. Altruistic aging: The evolutionary dynamics balancing longevity and evolvability. Mathematical Biosciences & Engineering, 2017, 14 (2) : 455-465. doi: 10.3934/mbe.2017028

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (3)

[Back to Top]