-
Previous Article
Hybrid models of cell and tissue dynamics in tumor growth
- MBE Home
- This Issue
- Next Article
Application of ecological and mathematical theory to cancer: New challenges
1. | Department of Mathematics, Konkuk University, Seoul 143-701, South Korea |
2. | Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210, United States |
3. | School of Mathematics & Statistics, University College Dublin, Belfield, Dublin 4, Ireland |
4. | Dept. of Mathematics and Statistics, Southern Illinois University, Edwardsville, Il 62025, United States |
5. | Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, South Korea |
For more information please click the “Full Text” above.
[1] |
Avner Friedman. A hierarchy of cancer models and their mathematical challenges. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 147-159. doi: 10.3934/dcdsb.2004.4.147 |
[2] |
Eduard Feireisl, Šárka Nečasová, Reimund Rautmann, Werner Varnhorn. New developments in mathematical theory of fluid mechanics. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : i-ii. doi: 10.3934/dcdss.2014.7.5i |
[3] |
Badam Ulemj, Enkhbat Rentsen, Batchimeg Tsendpurev. Application of survival theory in taxation. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2573-2578. doi: 10.3934/jimo.2020083 |
[4] |
Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 483-499. doi: 10.3934/dcdsb.2020213 |
[5] |
M.A.J Chaplain, G. Lolas. Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Networks and Heterogeneous Media, 2006, 1 (3) : 399-439. doi: 10.3934/nhm.2006.1.399 |
[6] |
Hsiu-Chuan Wei. Mathematical and numerical analysis of a mathematical model of mixed immunotherapy and chemotherapy of cancer. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1279-1295. doi: 10.3934/dcdsb.2016.21.1279 |
[7] |
Francisco Dieguez, Hugo Fort. An application of a dynamical model with ecological predator-prey approach to extensive livestock farming in uruguay: Economical assessment on forage deficiency. Journal of Dynamics and Games, 2019, 6 (2) : 119-129. doi: 10.3934/jdg.2019009 |
[8] |
Enkhbat Rentsen, N. Tungalag, J. Enkhbayar, O. Battogtokh, L. Enkhtuvshin. Application of survival theory in Mining industry. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 443-448. doi: 10.3934/naco.2020036 |
[9] |
Ali Akgül. A new application of the reproducing kernel method. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2041-2053. doi: 10.3934/dcdss.2020261 |
[10] |
Benedetto Piccoli. Optimal syntheses for state constrained problems with application to optimization of cancer therapies. Mathematical Control and Related Fields, 2012, 2 (4) : 383-398. doi: 10.3934/mcrf.2012.2.383 |
[11] |
M. M. El-Dessoky, Muhammad Altaf Khan. Application of Caputo-Fabrizio derivative to a cancer model with unknown parameters. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3557-3575. doi: 10.3934/dcdss.2020429 |
[12] |
J. Ignacio Tello. On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 263-278. doi: 10.3934/mbe.2013.10.263 |
[13] |
Alacia M. Voth, John G. Alford, Edward W. Swim. Mathematical modeling of continuous and intermittent androgen suppression for the treatment of advanced prostate cancer. Mathematical Biosciences & Engineering, 2017, 14 (3) : 777-804. doi: 10.3934/mbe.2017043 |
[14] |
Marcello Delitala, Tommaso Lorenzi. Recognition and learning in a mathematical model for immune response against cancer. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : 891-914. doi: 10.3934/dcdsb.2013.18.891 |
[15] |
Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1223-1240. doi: 10.3934/mbe.2016040 |
[16] |
Shu Liao, Jin Wang. Stability analysis and application of a mathematical cholera model. Mathematical Biosciences & Engineering, 2011, 8 (3) : 733-752. doi: 10.3934/mbe.2011.8.733 |
[17] |
Jingli Ren, Gail S. K. Wolkowicz. Preface: Recent advances in bifurcation theory and application. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : i-ii. doi: 10.3934/dcdss.2020417 |
[18] |
Chen Li, Fajie Wei, Shenghan Zhou. Prediction method based on optimization theory and its application. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1213-1221. doi: 10.3934/dcdss.2015.8.1213 |
[19] |
Carlos M. Hernández-Suárez, Carlos Castillo-Chavez, Osval Montesinos López, Karla Hernández-Cuevas. An application of queuing theory to SIS and SEIS epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (4) : 809-823. doi: 10.3934/mbe.2010.7.809 |
[20] |
Peter R. Kramer, Joseph A. Biello, Yuri Lvov. Application of weak turbulence theory to FPU model. Conference Publications, 2003, 2003 (Special) : 482-491. doi: 10.3934/proc.2003.2003.482 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]