\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics

Abstract Related Papers Cited by
  • The past century's description of oncolytic virotherapy as a cancer treatment involving specially-engineered viruses that exploit immune deficiencies to selectively lyse cancer cells is no longer adequate. Some of the most promising therapeutic candidates are now being engineered to produce immunostimulatory factors, such as cytokines and co-stimulatory molecules, which, in addition to viral oncolysis, initiate a cytotoxic immune attack against the tumor.
        This study addresses the combined effects of viral oncolysis and T-cell-mediated oncolysis. We employ a mathematical model of virotherapy that induces release of cytokine IL-12 and co-stimulatory molecule 4-1BB ligand. We found that the model closely matches previously published data, and while viral oncolysis is fundamental in reducing tumor burden, increased stimulation of cytotoxic T cells leads to a short-term reduction in tumor size, but a faster relapse.
        In addition, we found that combinations of specialist viruses that express either IL-12 or 4-1BBL might initially act more potently against tumors than a generalist virus that simultaneously expresses both, but the advantage is likely not large enough to replace treatment using the generalist virus. Finally, according to our model and its current assumptions, virotherapy appears to be optimizable through targeted design and treatment combinations to substantially improve therapeutic outcomes.
    Mathematics Subject Classification: Primary: 92C50, 92B05; Secondary: 37N25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Alarcón, H. M. Byrne and P. K. Maini, A cellular automaton model for tumour growth in inhomogeneous environment, J. Theor. Biol., 225 (2003), 257-274.doi: 10.1016/S0022-5193(03)00244-3.

    [2]

    N. Bagheri, M. Shiina, D. A. Lauffenburger and W. M. Korn, A dynamical systems model for combinatorial cancer therapy enhances oncolytic adenovirus efficacy by MEK-inhibition, PLoS Comput. Biol., 7 (2011), e1001085.doi: 10.1371/journal.pcbi.1001085.

    [3]

    Z. Bajzer, T. Carr, K. Josić, S. J. Russell and D. Dingli, Modeling of cancer virotherapy with recombinant measles viruses, J. Theor. Biol., 252 (2008), 109-122.doi: 10.1016/j.jtbi.2008.01.016.

    [4]

    D. L. Bartlett, Z. Liu, M. Sathaiah, R. Ravindranathan, Z. Guo, Y. He and Z. S. Guo, Oncolytic viruses as therapeutic cancer vaccines, Mol. Cancer, 12 (2013), p103.

    [5]

    M. Biesecker, J. H. Kimn, H. Lu, D. Dingli and Z. Bajzer, Optimization of virotherapy for cancer, Bull. Math. Biol., 72 (2010), 469-489.doi: 10.1007/s11538-009-9456-0.

    [6]

    R. Breban, A. Bisiaux, C. Biot, C. Rentsch, P. Bousso and M. L. Albert, Mathematical model of tumor immunotherapy for bladder carcinoma identifies the limitations of the innate immune response, Oncoimmunology, 1 (2012), 9-17.doi: 10.4161/onci.1.1.17884.

    [7]

    D. M. Catron, A. A. Itano, K. A. Pape, D. L. Mueller and M. K. Jenkins, Visualizing the first 50 hr of the primary immune response to a soluble antigen, Immunity, 21 (2004), 341-347.doi: 10.1016/j.immuni.2004.08.007.

    [8]

    Y. Chen, T. DeWeese, J. Dilley, Y. Zhang, Y. Li, N. Ramesh, J. Lee, R. Pennathur-Das, J. Radzyminski, J. Wypych, D. Brignetti, S. Scott, J. Stephens, D. B. Karpf, D. R. Henderson and D. C. Yu, CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity, Cancer Res., 61 (2001), 5453-5460.

    [9]

    R. J. De Boer, M. Oprea, R. Antia, K. Murali-Krishna, R. Ahmed and A. S. Perelson, Recruitment times, proliferation, and apoptosis rates during the CD8(+) T-cell response to lymphocytic choriomeningitis virus, J. Virol., 75 (2001), 10663-10669.

    [10]

    M. Del Vecchio, E. Bajetta, S. Canova, M. T. Lotze, A. Wesa, G. Parmiani and A. Anichini, Interleukin-12: biological properties and clinical application, Clin. Cancer Res., 13 (2007), 4677-4685.

    [11]

    D. Dingli, C. Offord, R. Myers, K. W. Peng, T. W. Carr, K. Josic, S. J. Russell and Z. Bajzer, Dynamics of multiple myeloma tumor therapy with a recombinant measles virus, Cancer Gene Ther., 16 (2009), 873-882.doi: 10.1038/cgt.2009.40.

    [12]

    R. Eftimie, J. L. Bramson and D. J. Earn, Interactions between the immune system and cancer: A brief review of non-spatial mathematical models, Bull. Math. Biol., 73 (2011), 2-32.doi: 10.1007/s11538-010-9526-3.

    [13]

    N. B. Elsedawy and S. J. Russell, Oncolytic vaccines, Expert Rev. Vaccines, 12 (2013), 1155-1172.doi: 10.1586/14760584.2013.836912.

    [14]

    A. Friedman, J. P. Tian, G. Fulci, E. A. Chiocca and J. Wang, Glioma virotherapy: Effects of innate immune suppression and increased viral replication capacity, Cancer Res., 66 (2006), 2314-2319.doi: 10.1158/0008-5472.CAN-05-2661.

    [15]

    I. Ganly, V. Mautner and A. Balmain, Productive replication of human adenoviruses in mouse epidermal cells, J. Virol., 74 (2000), 2895-2899.doi: 10.1128/JVI.74.6.2895-2899.2000.

    [16]

    D. Hanahan and R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, 144 (2011), 646-674.doi: 10.1016/j.cell.2011.02.013.

    [17]

    J. H. Huang, S. N. Zhang, K. J. Choi, I. K. Choi, J. H. Kim, M. G. Lee, M. Lee, H. Kim and C. O. Yun, Therapeutic and tumor-specific immunity induced by combination of dendritic cells and oncolytic adenovirus expressing IL-12 and 4-1BBL, Mol. Ther., 18 (2010), 264-274.doi: 10.1038/mt.2009.205.

    [18]

    C. Jogler, D. Hoffmann, D. Theegarten, T. Grunwald, K. Uberla and O. Wildner, Replication properties of human adenovirus in vivo and in cultures of primary cells from different animal species, J. Virol., 80 (2006), 3549-3558.doi: 10.1128/JVI.80.7.3549-3558.2006.

    [19]

    H. L. Kaufman and S. D. Bines, OPTIM trial: A Phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma, Future Oncol., 6 (2010), 941-949.doi: 10.2217/fon.10.66.

    [20]

    N. L. Komarova and D. Wodarz, ODE models for oncolytic virus dynamics, J. Theor. Biol., 263 (2010), 530-543.doi: 10.1016/j.jtbi.2010.01.009.

    [21]

    N. Kronik, Y. Kogan, M. Elishmereni, K. Halevi-Tobias, S. Vuk-Pavlović and A. Agur, Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models, PLoS ONE, 5 (2010), e15482.doi: 10.1371/journal.pone.0015482.

    [22]

    F. Le Bœuf, C. Batenchuk, M. Vähä-Koskela, S. Breton, D. Roy, C. Lemay, J. Cox, H. Abdelbary, T. Falls, G. Waghray, H. Atkins, D. Stojdl, J. S. Diallo, M. Kærn and J. C. Bell, Model-based rational design of an oncolytic virus with improved therapeutic potential, Nat. Commun., 4 (2013), p1974.

    [23]

    F. Le Bœuf, J. S. Diallo, J. A. McCart, S. Thorne, T. Falls, M. Stanford, F. Kanji, R. Auer, C. W. Brown, B. D. and Lichty, K. Parato, H. Atkins, D. Kirn and J. C. Bell, Synergistic interaction between oncolytic viruses augments tumor killing, Mol. Ther., 18 (2010), 888-895.

    [24]

    D. Leopardo, S. C. Cecere, M. Di Napoli, C. Cavaliere, C. Pisano, S. Striano, L. Marra, L. Menna, L. Claudio, S. Perdona, S. Setola, M. Berretta, R. Franco, R. Tambaro, S. Pignata and G. Facchini, Intravesical chemo-immunotherapy in non muscle invasive bladder cancer, Eur. Rev. Med. Pharmacol. Sci., 17 (2013), 2145-2158.

    [25]

    H. L. Li, S. Li, J. Y. Shao, X. B. Lin, Y. Cao, W. Q. Jiang, R. Y. Liu, P. Zhao, X. F. Zhu, M. S. Zeng, Z. Z. Guan and W. Huang, Pharmacokinetic and pharmacodynamic study of intratumoral injection of an adenovirus encoding endostatin in patients with advanced tumors, Gene Ther., 15 (2008), 247-256.doi: 10.1038/sj.gt.3303038.

    [26]

    D. G. Mallet and L. G. De Pillis, A cellular automata model of tumor-immune system interactions, J. Theor. Biol., 239 (2006), 334-350.doi: 10.1016/j.jtbi.2005.08.002.

    [27]

    A. Melcher, K. Parato, C. M. Rooney and J. C. Bell, Thunder and lightning: Immunotherapy and oncolytic viruses collide, Mol. Ther., 19 (2011), 1008-1016.doi: 10.1038/mt.2011.65.

    [28]

    W. Mok, T. Stylianopoulos, Y. Boucher and R. K. Jain, Mathematical modeling of herpes simplex virus distribution in solid tumors: implications for cancer gene therapy, Clin. Cancer Res., 15 (2009), 2352-2360.doi: 10.1158/1078-0432.CCR-08-2082.

    [29]

    D. M. Rommelfanger, C. P. Offord, J. Dev, Z. Bajzer, R. G. Vile and D. Dingli, Dynamics of melanoma tumor therapy with vesicular stomatitis virus: Explaining the variability in outcomes using mathematical modeling, Gene Ther., 19 (2012), 543-549.doi: 10.1038/gt.2011.132.

    [30]

    S. J. Russell, K. W. Peng and J. C. Bell, Oncolytic virotherapy, Nat. Biotechnol., 30 (2012), 658-670.doi: 10.1038/nbt.2287.

    [31]

    J. R. Tysome, X. Li, S. Wang, P. Wang, D. Gao, P. Du, D. Chen, R. Gangeswaran, L. S. Chard, M. Yuan, G. Alusi, N. R. Lemoine and Y. Wang, A novel therapeutic regimen to eradicate established solid tumors with an effective induction of tumor-specific immunity, Clin. Cancer Res., 18 (2012), 6679-6689.doi: 10.1158/1078-0432.CCR-12-0979.

    [32]

    M. J. van Stipdonk, E. E. Lemmens and S. P. Schoenberger, Naïve CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation, Nat. Immunol., 2 (2001), 423-429.

    [33]

    H. Veiga-Fernandes, U. Walter, C. Bourgeois, A. McLean and B. Rocha, Response of naïve and memory CD8+ T cells to antigen stimulation in vivo, Nat. Immunol., 1 (2000), 47-53.

    [34]

    Y. Wang, H. Wang, C. Y. Li and F. Yuan, Effects of rate, volume, and dose of intratumoral infusion on virus dissemination in local gene delivery, Mol. Cancer Ther., 5 (2006), 362-366.doi: 10.1158/1535-7163.MCT-05-0266.

    [35]

    D. Wodarz, Viruses as antitumor weapons: Defining conditions for tumor remission, Cancer Res., 61 (2001), 3501-3507.

    [36]

    D. Wodarz, Computational modeling approaches to studying the dynamics of oncolytic viruses, Math. Biosci. Eng., 10 (2013), 939-957.doi: 10.3934/mbe.2013.10.939.

    [37]

    D. Wodarz and N. Komarova, Towards predictive computational models of oncolytic virus therapy: basis for experimental validation and model selection, PLoS ONE, 4 (2009), e4271.doi: 10.1371/journal.pone.0004271.

    [38]

    J. D. Wolchok, H. Kluger, M. K. Callahan, M. A. Postow, N. A. Rizvi, A. M. Lesokhin, N. H. Segal, C. E. Ariyan, R. A. Gordon, K. Reed, M. M. Burke, A. Caldwell, S. A. Kronenberg, B. U. Agunwamba, X. Zhang, I. Lowy, H. D. Inzunza, W. Feely, C. E. Horak, Q. Hong, A. J. Korman, J. M. Wigginton, A. Gupta and M. Sznol, Nivolumab plus ipilimumab in advanced melanoma, N. Engl. J. Med., 369 (2013), 122-133.doi: 10.1056/NEJMoa1302369.

    [39]

    S. Worgall, G. Wolff, E. Falck-Pedersen and R. G. Crystal, Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration, Hum. Gene Ther., 8 (1997), 37-44.

    [40]

    J. T. Wu, D. H. Kirn and L. M. Wein, Analysis of a three-way race between tumor growth, a replication-competent virus and an immune response, Bull. Math. Biol., 66 (2004), 605-625.doi: 10.1016/j.bulm.2003.08.016.

    [41]

    W. Zhang, G. Fulci, H. Wakimoto, T. A. Cheema, J. S. Buhrman, D. S. Jeyaretna, A. O. Stemmer Rachamimov, S. D. Rabkin and R. L. Martuza, Combination of oncolytic herpes simplex viruses armed with angiostatin and IL-12 enhances antitumor efficacy in human glioblastoma models, Neoplasia, 15 (2013), 591-599.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(230) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return