Citation: |
[1] |
D. E. Apushkinskaya and N. I. Nazarov, A survey of results on nonlinear Wentzell problems, Appl. Math., 45 (2000), 69-80.doi: 10.1023/A:1022288717033. |
[2] |
J. Banasiak and M. Lachowicz, Methods of Small Parameter in Mathematical Biology, Birkhauser, 2014.doi: 10.1007/978-3-319-05140-6. |
[3] |
A. Bartłomiejczyk and H. Leszczyński, Method of lines for physiologically structured models with diffusion, Appl. Numer. Math., 94 (2015), 140-148.doi: 10.1016/j.apnum.2015.03.006. |
[4] |
A. Bartłomiejczyk and H. Leszczyński, Comparison principles for parabolic differential-functional initial-value problems, Nonlinear. Anal., 57 (2004), 63-84.doi: 10.1016/j.na.2003.11.005. |
[5] |
A. Bobrowski and K. Morawska, From a PDE model to an ODE model of dynamics of synaptic depression, Disc. Cont. Dyn. Sys. Series B, 17 (2012), 2313-2327.doi: 10.3934/dcdsb.2012.17.2313. |
[6] |
A. Calsina and J. Z. Farkas, Steady states in a structured epidemic model with Wentzell boundary condition, J. Evol. Equat., 12 (2012), 495-512.doi: 10.1007/s00028-012-0142-6. |
[7] |
J. M. Cushing, An Introduction to Structured Population Dynamics, SIAM, Philadelphia, 1998.doi: 10.1137/1.9781611970005. |
[8] |
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000. |
[9] |
J. Z. Farkas and T. Hagen, Stability and regularity results for a size-structured population model, J. Math. Anal. App., 328 (2007), 119-136.doi: 10.1016/j.jmaa.2006.05.032. |
[10] |
J. Z. Farkas and P. Hinow, Physiologically structured populations with diffusion and dynamic boundary conditions, Math. Biosci. Eng., 8 (2011), 503-513.doi: 10.3934/mbe.2011.8.503. |
[11] |
W. Feller, Diffusion processes in one dimension, Trans. Amer. Math. Soc., 77 (1954), 1-31.doi: 10.1090/S0002-9947-1954-0063607-6. |
[12] |
A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J. 1964. |
[13] |
M. E. Gurtin and R. C. MacCamy, Diffusion models for age-structured populations, Math. Biosc., 54 (1981), 49-59.doi: 10.1016/0025-5564(81)90075-4. |
[14] |
K. P. Hadeler, Structured populations with diffusion in state space, Math. Biosci. Eng., 7 (2010), 37-49.doi: 10.3934/mbe.2010.7.37. |
[15] |
N. Kato, A general model of size-dependent population dynamics with nonlinear growth rate, J. Math. Anal. Appl., 297 (2004), 234-256.doi: 10.1016/j.jmaa.2004.05.004. |
[16] |
T. A. Kwembe and Z. Zhang, A semilinear equation with generalized Wentzell boundary condition, Non. Anal., 73 (2010), 3162-3170.doi: 10.1016/j.na.2010.06.068. |
[17] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasi-linear Equations of Parabolic Type, (in Russian), Nauka, Moscow, 1967; (Translation of Mathematical Monographs, Vol. 23 Am. Math. Soc., Providence, R.I., 1968). |
[18] |
P. Magal and S. Ruan, Structured Population Models in Biology and Epidemiology, Lecture Notes in Mathematics, Vol.1936, Springer-Verlag, Berlin, Heidelberg, 2008.doi: 10.1007/978-3-540-78273-5. |
[19] |
J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Lect. Notes in Biomath. Vol. 68, Springer, Berlin, 1986.doi: 10.1007/978-3-662-13159-6. |
[20] |
B. Perthame, Transport Equations in Biology, Frontiers in Mathematics series, Birkhäuser, Boston, 2007. |
[21] |
S. L. Tucker and S. O. Zimmermann, A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables, SIAM J. Appl. Math., 48 (1988), 549-591.doi: 10.1137/0148032. |
[22] |
R. Waldstatter, K. P. Hadeler and G. Greiner, A Lotka-McKendrick model for a population structured by the level of parasitic infection, SIAM J. Math. Anal., 19 (1988), 1108-1118.doi: 10.1137/0519075. |
[23] |
W. Walter, Ordinary Differential Equations, Springer-Verlag, Berlin, Heidelberg, 1998.doi: 10.1007/978-1-4612-0601-9. |
[24] |
A. D. Wentzell, On boundary conditions for multi-dimensional diffusion processes, Theory Probab. Appl., 4 (1959), 164-177.doi: 10.1137/1104014. |